Skip to main content

Testing the Hydraulic Properties of the Drilled Formations

  • Chapter
  • First Online:
Geothermal Energy
  • 2766 Accesses

Abstract

Hydraulic tests provide the key data on the hydraulic conductivity of the reservoir formation and permeability structure of the reservoir. These hydraulic properties are fundamental for the success of a geothermal project. The first hydraulic tests are already made in the hanging wall of the intended reservoir formation during drilling of the deep well. After completion of the wellbore, the hydraulic properties of the reservoir formation must be extensively tested. This includes long-term tests, circulation experiments, or tracer tests in the intended target horizon. Chapter 14 gives a brief overview over some standard hydraulic testing methods, the practical conductance of the tests and the processing and interpretation of measured data.

Hydraulic tests may solve very diverse problems. Therefore, the appropriate testing procedures depend on the specific data needed to answer the current question. However, all test methods monitor water pressure changes that result from an incurred excursion from the undisturbed pressure distribution in the reservoir. The excursion is being imposed by the testing method. A large variety of hydraulic testing schemes are currently used in groundwater exploration, by the oil and gas industry and in geothermal energy plant development

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, R. G., Al-Hussainy, R. & Ramey Jr., H. J., 1970. An Investigation of Wellbore Storage and Skin Effect in Unsteady Liquid Flow: I. Analytical Treatment. SPE Journal, 10(3), 279–290.

    Google Scholar 

  • Al Saedi, A. Q., Flori, R. E. & Kabir, C. S., 2018. New analytical solutions of wellbore fluid temperature profiles during drilling, circulation, and cementing operations. Journal of Petroleum Science and Engineering, 170, 206–217.

    Google Scholar 

  • Barenblatt, G. E., Zeltov, J. P. & Kochina, J. N., 1960. Basic Concepts in the Theory of Homogeneous Liquids in Fissured Rocks. Journ. appl. Math. Mech. (USSR), 24(5), 1286–1303

    Google Scholar 

  • Berkaloff, E., 1967. Interprétation des pompages d'essai. Cas de nappes captives avec une strate conductrice d’eau privilégiée. Bull. B.R.G.M. (deuxième série), section III: 1, 33–53.

    Google Scholar 

  • Black, J. H., 1985. The interpretation of slug tests in fissured rocks. Quarterly Journal of Engineering Geology and Hydrogeology, 18(2), 161–171.

    Google Scholar 

  • Bourdet, D., Ayoub, J.A. & Pirard, Y.M., 1989. Use of Pressure Derivative in Well-Test Interpretation. Soc. Petrol., Engineers, SPE, p. 293–302.

    Google Scholar 

  • Bredehoeft, J.D. 1967. Response of well-aquifer systems to Earth tides. Journal of Geophysical Research, 72/12, 3075–3087.

    Google Scholar 

  • Bredehoeft, J. D. & Papadopulos, I. S., 1965. Rates of vertical groundwater movement estimated from the earth’s thermal profile. Water Resour. Res., 1, 325–328.

    Google Scholar 

  • Butler, J. J., Jr., 1998. The Design, Performance, and Analysis of Slug Tests. Lewis Publishers, New York, 252 pp.

    Google Scholar 

  • Cinco, L. H., Ramey, H. J. & Miller, F. G., 1975. Unsteady-State Pressure Distribution Created by a Well with an Inclined Fracture. Soc. Petrol. Engineers of AIME (SPE 5591), 18.

    Google Scholar 

  • Cooper, H. H. & Jacob, C. E., 1946. A Generalized graphical method for evaluating formation constants and summarizing well-field history. Trans. Am. Geoph. Union, 27, 526–534.

    Google Scholar 

  • Cooper, H. H. J., Bredehoeft, J. D. & Papadopulos, I. S., 1967. Response of a finite-diameter well to an instantaneous charge of water. Water Resources Research, 3(1), 263–269.

    Google Scholar 

  • Doan, M.-L. & Brodsky, E. E., 2006. Tidal analysis of water level in continental boreholes. Tutorial, version 2.2, University of California, Santa Cruz, 61 p.

    Google Scholar 

  • Dyes, A. B., Kemp, C. E. & Caudle, B. H., 1958. Effect of Fractures on Sweep-Out Pattern. Trans. AIME, 213, 245–249.

    Google Scholar 

  • Everdingen, van, A. F., 1953. The Skin Effect and its Influence on the Productive Capacity of a Well. Petrol. Trans. AIME, 198, 171–176.

    Google Scholar 

  • Ferris, J. G., 1951. Cyclic fluctuations of water level as a basis for determining aquifer transmissivity. Intl. Assoc. Sci. Hydrology Publ., 33, 148–155.

    Google Scholar 

  • Freeze, K. A. & Cherry, J. A., 1997. Groundwater. Prentice Hall, 604 pp.

    Google Scholar 

  • Ghergut, I., Sauter, M., Behrens, H., Rose, P., Licha, T., Lodemann, M. & Fischer, S., 2007. Tracer-assisted evaluation of hydraulic stimulation experiments for geothermal reservoir candidates in deep crystalline and sedimentary formations. In: EGC Proceedings European Geothermal Congress, Unterhaching, pp. 1–12.

    Google Scholar 

  • Gringarten, A. C. & Ramey, H. J., 1974. Unsteady-State Pressure Distributions created by a Well with a single Horizontal Fracture, Partial Penetration, or Restricted Entry. Soc. Petrol. Engineers Journ., 413–426.

    Google Scholar 

  • Gulati, M. S., Lipman, S. C. & Strobel, C. J., 1978. Tritium Tracer Survey at The Geysers. Geothermal Resources Council Transactios, 2, 237–239.

    Google Scholar 

  • Hawkins, M. F., 1956. A Note on the Skin Effect. Trans. AIME, 207, 356–357.

    Google Scholar 

  • Hekel, U., 2011. Hydraulische Tests.- In: Bucher, K., Gautschi, A., Geyer, T., Hekel, U., Mazurek, M., Stober, I.: Hydrogeologie der Festgesteine, Fortbildungsveranstaltung der FH-DGG, Freiburg.

    Google Scholar 

  • Horner, D. R., 1951. Pressure Build-up in Wells. In: Bull, E. J. (ed.): Proc. 3rd World Petrol. Congr., pp. 503–521, Leiden, Netherlands.

    Google Scholar 

  • Käss, W., 1998. Tracing Techniques in Geohydrology. A. A. Balkema, Rotterdam, Netherlands, 581 pp.

    Google Scholar 

  • Kruseman, G. P. & de Ridder, N. A., 1994. Analysis and Evaluation of Pumping Test Data, pp. 377, International Institute for Land Reclamation and Improvement ILRI, Wageningen, The Netherlands.

    Google Scholar 

  • Langaas, K., Nilsen, K.I. & Skjaeveland, S.M., 2005. Tidal Pressure Response and Surveillance of Water Encroachment.- Society of Petroleum Engineers, SPE 95763, 11 p.

    Google Scholar 

  • Leibundgut, C., Moaloszewski, P. & Külls, C., 2011. Tracer in Hydrology. John Wiley & Sons, New York, 432 pp.

    Google Scholar 

  • Mansure, A. J. & Reiter, M., 1979. A vertical groundwater movement correction for heat flow. J. Geophys. Res., 84(7), 3490–3496.

    Google Scholar 

  • Matthews, C. S. & Russel, D. G., 1967. Pressure Buildup and Flow Tests in Wells. In: AIME Monograph 1, H.L. Doherty Series SPE of AIME, New York, 167 pp.

    Google Scholar 

  • McCabe, W. J., Barry, B. J. & Manning, M. R., 1981. Radioactive Tracers in Geothermal Underground Water Flow Studies. Geothermics, 12(2–3), 83–110.

    Google Scholar 

  • Moradi, B., Ayoub, M., Bataee, M. & Mohammadian, E., 2020. Calculation of temperature profile in injection wells. Journal of Petroleum Exploration and Production Technology, 10, 687–697.

    Google Scholar 

  • Nielsen, K. A., 2007. Fractured Aquifers: Formation Evaluation by Well Testing. Trafford Publishing, Victoria, BC, Canada, 229 pp.

    Google Scholar 

  • Nowak, T. J., 1953. The estimation of water injection profiles from temperature surveys. Journal of Petroleum Technology. 5, 203–212.

    Google Scholar 

  • Odenwald, B., Hekel, U. & Thormann, H., 2009. Groundwater flow - groundwater storage (in German). In: Witt, K.J. (Hrsg.): Grundbau-Taschenbuch, Teil 2: Geotechnische Verfahren, pp. 950, Ernst & Sohn.

    Google Scholar 

  • Papadopulos, S. S., Bredehoeft, J. D. & Cooper, H. H., Jr., 1973. On the analysis of ‘slug test’ data. Water Resources Research, 9(4), 1087–1089.

    Google Scholar 

  • Pourafshary, P., Varavei, A., Sepehrnoori, K. & Podio, A., 2009. A compositional wellbore/reservoir simulator to model multiphase flow and temperature distribution. Journal of Petroleum Science and Enggineering, 69, 40–52.

    Google Scholar 

  • Ramey, H. J. J., Agarwal, R. G. & Martin, I., 1975. Analysis of ‘slug test’ or DST flow period data. Journal of Canadian Petroleum Technology. 3(37), 47.

    Google Scholar 

  • Rodrigues, N. E.V., Robinson, B. A. & Counce, D. A., 1993. Tracer Experiment Results During the Long-Term Flow Test of the Fenton Hill Reservoir.- Proceedings, 18th Workshop on Geothermal Reservoir Engineering Stanford University, SGP-TR-145, 199–206, Stanford, California.

    Google Scholar 

  • Russell, D. G. & Truitt, N. E., 1964. Transient Pressure Behavior in Vertically Fractured Reservoirs. Journ. Petrol. Technol, 1159–1170.

    Google Scholar 

  • Sanjuan, B., Pinault, J. L., Rose, P., Gérard, A., Brach, M., Braibant, G., Crouzet, C., Foucher, J. C., Gautier, A. & Touzelet, S., 2006. Geochemical fluid characteristics and main achievements about tracer tests at Soultz-sous-Forêts (France).- Final Report BRGM/RP-54776-FR, 67 p., Orléans, France.

    Google Scholar 

  • Sanjuan, B., Brach, M., Genter, A., Sanjuan, R., Scheiber, J. & Touzelet, S., 2015. Tracer testing of the EGS site at Soultz-sous-Forêts (Alsace, France) between 2005 and 2013.- Proceedings World Geothermal Congress, 12 p., Melbourne, Australia.

    Google Scholar 

  • Sauty, J. P., 1980. An analysis of hydrodispersive transfer in aquifers. Water Resour. Res., 16(1), 145–158.

    Google Scholar 

  • Schwartz, F. W. & Zhang, H., 2003. Fundamentals of Ground Water. Wiley & Sons, New York, 592 pp.

    Google Scholar 

  • Shook, G.M., 2001. Predicting Thermal Breakthrough in Heterogeneous Media from Tracer Tests. Geothermics 30(6), 573–589.

    Google Scholar 

  • Stober, I., 1986. Strömungsverhalten in Festgesteinsaquiferen mit Hilfe von Pump- und Injektionsversuchen (The Flow Behaviour of Groundwater in Hard-Rock Aquifers—Results of Pumping and Injection Tests) (in German). Geologisches Jahrbuch, Reihe C, 204 pp.

    Google Scholar 

  • Stober, I., 1988. Geohydraulic Results from Tests in hydrogeothermal Wells in Baden-Württemberg (in German) (eds Bertleff, B., Joachim, H., Koziorowski, G., Leiber, J., Ohmert, W., Prestel, R., Stober, I., Strayle, G., Villinger, E. & Werner, J.), pp. 27–116, Jh. geol. Landesamt Baden-Württemberg, Freiburg i.Br.

    Google Scholar 

  • Stober, I., 1992. The tides and their hydraulic effects on groundwater (in German). DGM, 36(4), 142–147.

    Google Scholar 

  • Stober, I., 2011. Depth- and pressure-dependent permeability in the upper continental crust: data from the Urach 3 geothermal borehole, southwest Germany. Hydrogeology Journal, 19, 685–699.

    Google Scholar 

  • Stober, I. & Bucher, K., 2005a. The upper continental crust, an aquifer and its fluid: hydraulic and chemical data from 4 km depth in fractured crystalline basement rocks at the KTB test site. Geofluids, 5, 8–19

    Google Scholar 

  • Stober, I., Richter, A., Brost, E. & Bucher, K., 1999. The Ohlsbach Plume: Natural release of Deep Saline Water from the Crystalline Basement of the Black Forest. Hydrogeology Journal, 7, 273–283

    Google Scholar 

  • Stober, I., Fritzer, T., Obst, K., Schulz, R., 2009. Nutzungsmöglichkeiten der Tiefen Geothermie in Deutschland.- Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, 73 S., Berlin.

    Google Scholar 

  • Tester, J.W., Bivins, R. L. & Potter, R. M., 1982. Interwell Tracer Analyses of a Hydraulically Fractured Granitic Geothermal Reservoir. Society of Petroleum Engineers, 22, 537–554.

    Google Scholar 

  • Theis, C. V., 1935. The Relation between the lowering of the Piezonetric Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage. Trans. AGU, 519–524.

    Google Scholar 

  • Todd, D. K., 1980. Groundwater Hydrology (2nd edition). Wiley, New York, 535 pp.

    Google Scholar 

  • Tsang, C.-F., 1987. A Borehole Fluid Conductivity Logging Method for the Determination of Fracture Inflow Parameters. In: Report of the Earth Science Division, pp. 53, Lawrence Berkley Laboratory, University of California.

    Google Scholar 

  • Tsang, C.-F., Hufschmied, P. & Hale, F. V., 1990. Determination of Fracture Inflow Parameters With a Borehole Fluid Conductivity Logging Method. Water Resources Research, 26(4), 561–578.

    Google Scholar 

  • Zarrouk, S. J. & McLean, K., 2019. Geothermal Well Test Analysis: Fundamentals, Applications and Advanced Techniques. Academic Press, 366 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Stober .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stober, I., Bucher, K. (2021). Testing the Hydraulic Properties of the Drilled Formations. In: Geothermal Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-71685-1_14

Download citation

Publish with us

Policies and ethics