Skip to main content

Environmental Issues Related to Deep Geothermal Systems

  • Chapter
  • First Online:
Geothermal Energy
  • 2827 Accesses

Abstra

The conversion of geothermal energy into electrical power or useful heat produces no CO2 and no flue gas emissions such as soot particles, sulfur dioxide and nitrogen oxides. The operation of a geothermal power plant is deeply friendly to the environment. The risk for harmful environmental effects is extremely low during normal operation and even during accidents. The low-risk systems result from the use of high-quality structural materials and from the mature technology with numerous safety precaution installations.

Construction of geothermal systems and power plants causes CO2 emissions related to manufacturing construction materials, transport of materials and equipment and service traffic, no different as with construction of other types of power plants. Careful planning of logistics helps to minimize these emissions.

Developing the underground heat exchanger of an enhanced geothermal system involves hydraulic stimulation measures that cause minor seismicity. Rarely the induced seismicity can cause irritation if physically sensed at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ake, J., Mahrer, K., O’Connell, D. & Block, L., 2005. Deep-injection and closely monitored induced seismicity at Paradox Valley, Colorado. Bull. Seismol. Soc. Am., 95(2), 664–683.

    Google Scholar 

  • Alcolea, A., Meier, P., Vilarrasa, V., Olivella, S. & Carrera, J., 2019. Hydromechanical medelling of the hydraulic stimulation PX2–1 in Pohang (South Korea).- Schatzalp, 3rd Induced Seismicity Workshop, p. 73, Davos.

    Google Scholar 

  • Baisch, S., Weidler, R., Vörös, R., Wyborn, D. & de Graaf, L., 2006. Induced Seismicity during the Stimulation of a Geothermal HFR Reservoir in the Cooper Basin, Australia. Bulletin of the Seismological Society of America, 96, 2242–2256.

    Google Scholar 

  • Baisch, S., Vörös, R., Weidler, R. & Wyborn, D., 2009. Investigations of Fault Mechanisms during Geothermal Reservoir Stimulation Experiments in the Cooper Basin, Australia.- Bulletin of the Seismological Society of America, 99, 148–158.

    Google Scholar 

  • Baria, R., Jung, R., Tischner, T., Nicholls, J., Michelet, S., Sanjuan, B., Soma, N., Asanuma, H., Dyer, B. & Garnish, J., 2006. Creation of an HDR/EGS reservoir at 5000 m depth at the European HDR project. In: Proceedings 31st Workshop on Geothermal Reservoir Engineering, Stanford, California.

    Google Scholar 

  • Bondor, P. L. & Rouffignac, D. E., 1995. Land subsidence and well failure in the Belridge diatomite oil field, Kern county, California. Part II. Applications. AHS Publ., 234, 69–78.

    Google Scholar 

  • Cook, N. G. W., 1976. Seismicity associated with Mining. Engineering Geology, 10, 99–122.

    Google Scholar 

  • Davis, S. D. & Pennington, W. D., 1989. InInduced seismic deformation in the Cogdell oil field of West Texas. Bulletin of the Seismological Society of America, 79, 1477–1495.

    Google Scholar 

  • Diehl, T., Kraft, T., Kissling, E. & Wiemer, S., 2017. The induced earthquake sequence of St. Gallen, Switzerland: Fault reactivation and fluid interactions imaged by microseismicity.- Schatzalp, 2nd workshop, Davos.

    Google Scholar 

  • Dost, B., Goutbeek, F., van Eck, T. & Kraaijpoel, D., 2012. Monitoring induced seismicity in the North of the Netherlands: status report 2010. Scientific report; WR 2012–03, Royal Netherlands Meteorological Institute, Ministry of Infrastructure and the Environment, 47 p., De Bilt.

    Google Scholar 

  • Faure, G., 1986. Principles of Isotope Geology (2nd edition). Wiley & Sons, 608 pp.

    Google Scholar 

  • Fielding, E. J., Blom, R. G. & Goldstein, R. M., 1998. Rapid subsidence over oil fields meassured by SAR interferometry. Geophysical Research Letters, 25(17), 3215–3218.

    Google Scholar 

  • Genter, A., Keith, E., Cuenot, N., Fritsch, D. & Sanjuan, B., 2010. Contribution to the exploration of deep crystalline fractured reservoir of Soultz of the knowledge of enhanced geothermal systems (EGS). C. R. Geoscience, 342, 502–516.

    Google Scholar 

  • Gérard, A., Genter, A., Kohl, T., Lutz, P., Rose, P. & Rummel, F., 2006. The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forêts (Alsace, France).- Geothermics, p. 473–483.

    Google Scholar 

  • Grasso, J. R., 1992. Mechanics of seismic Instabilities induced by the Recovery of Hydrocarbons. Pure Appl. Geophys, 139, 507–534.

    Google Scholar 

  • Gupta, H. K. & Rastogi, B. K., 1976. Dams and Earthquakes. Elsevier, Amsterdam, 229 pp.

    Google Scholar 

  • Häring, M. O., Schanz, U., Ladner, F. & Dyer, B. C., 2008. Characterization of the Basel 1 enhaced geothermal system. Geothermics, 37/5, 469–495.

    Google Scholar 

  • Healy, J., Rubey, W., Griggs, D. & Raleigh, C., 1968. The Denver earthquakes.- Science, 161, 1301–1310.

    Google Scholar 

  • Hsieh, P. A. & Bredehoeft, J. S., 1981. A Reservoir analysis of the Denver earthquakes-A case of induced seismicity. Journal of Geophysical Research, 86, 903–920.

    Google Scholar 

  • Husen, S., Bachmann, C. & Giardini, D., 2007. Locally triggered seismicity in the central Swiss Alps following the large rainfall event of August 2005. Geophysical Journal International, 171(3), 1126–1134.

    Google Scholar 

  • Ingebritsen, S. E. & Manning, C. E., 1999. Geological implications of a permeability-depth curve for the continental crust. Geology, 27, 1107–1110.

    Google Scholar 

  • Johnson, A. I., 1991. Land Subsidence. IAHS Publication, 200, 680.

    Google Scholar 

  • Kim, K.-H., Ree, J.-H., Kim Y.-H., Kim, S., Kang S. Y. & Seo W., 2018. Assessing whether the 2017 MW 5.4 Pohang earthquake in South Korea was an induced event. Science, 360, 1007–1009.

    Google Scholar 

  • Kim, K.-H., Ree, J.-H., Kim Y.-H., Kim, S., Kang S. Y. & Seo W., 2019. The 15 November 2017 Pohang earthquake. Schatzalp, 3rd Induced Seismicity Workshop, p. 7, Davos.

    Google Scholar 

  • Kovach, R. L., 1974. Source mechanisms for Wilmington oil field, California subsidence earthquakes. Bull. Seismol. Soc. Am., 64, 699–711.

    Google Scholar 

  • Kraft, T., Mai, M. P., Wiener, S., Deichmann, N., Ripperger, J., Kästli, P., Bachmann, C., Fäh, D., Wössner, J. & Guardini, D., 2009. Enhanced Geothermal Systems: Mitigating Risk in Urban Areas.- EOS, Transactions. American Geophysical Union, 90(32 (11)), 273–274.

    Google Scholar 

  • Ladner, F., Schanz, U. & Häring, M. O., 2008. Deep-Heat-Mining-Project Basel: First Insights from the Development of an Enhanced Geothermal System (EGS) (in German). Bull. angew. Geol., 13(1), 41–54.

    Google Scholar 

  • Langenbruch, C. & Shapiro, S. A., 2010. Decay rate of fluid-induced seismicity after termination of reservoir stimulations. Geophysics, 75(6), MA53–MA62.

    Google Scholar 

  • Majer, E., Baria, R. & Stark, M., 2008. Protocol for induced seismicity associated with enhanced geothermal systems. In: Report produced in Task D Annex I (9 April 2008), International Energy Agency-Geothermal Implementing Agreement (incorporating comments by C. Bromley, W. Cumming, A. Jelacic and L. Rybach).

    Google Scholar 

  • Massonnet, D., Holzer, T. & Vandon, H., 1998. Correction to “Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry.- Geophysical research letters, 25/16, p. 3213.

    Google Scholar 

  • McGarr, A., 1991. On a possible connection between 3 major earthquakes in California and oil production. Bull. Seism. Soc. Am., 81, 948–970.

    Google Scholar 

  • Moeck, I., Bloch, T., Graf, R., Heuberger, S., Kuhn, P., Naef, H., Sonderegger, M., Uhlig, S. & Wolfgramm, M., 2015. The St. Gallen Project: Development of Fault Controlled Geothermal Systems in Urban Areas.- Proceedings World Geothermal Congress, 5 p., Melbourne/Australia.

    Google Scholar 

  • Nicholson, C. & Wesson, R. L., 1990. Earthquake Hazard associated with deep well injection - a report to the U.S. Environmental Protection Agency, pp. 74, U.S. Geological Survey Bulletin.

    Google Scholar 

  • Óladóttir, A. & Friðriksson, P., 2015. The Evolution of CO2 Emissions and Heat Flow through Soil since 2004 in the Utilized Reykjanes Geothermal Area, SW Iceland: Ten Years of Observations on Changes in Geothermal Surface Activity. World Geothermal Congress, 10 p., Melbourne, Australia.

    Google Scholar 

  • Olafsdottir, S., Gardarsson, S.M., Andradottir, H.O., Armannsson, H. & Oskarsson, F., 2015 Near Field Sinks and Distribution of H2S from Two Geothermal Power Plants in Iceland. World Geothermal Congress, 9 p., Melbourne, Australia.

    Google Scholar 

  • Omori, F., 1894. On the aftershocks of earthquakes. Journal of Colloid Science, 7, 111–200.

    Google Scholar 

  • Ottemöller, L. & Sargeant, S., 2013. A Local Magnitude Scale ML for the United Kingdom.- Bulletin of the Seismological Society of America, 103, 2884–2893.

    Google Scholar 

  • Portier, S., André, L. & Vuataz, F.-D., 2007. Review on chemical stimulation techniques in oil industry and applications to geothermal systems. In: Engine, pp. 32, CREGE, Neuchatel, Switzerland.

    Google Scholar 

  • Robertsson, J.O. & Chilingar, G., 2017. Environmental Aspects of Oil and Gas Production.- Wiley, 273 p., Hoboken, USA.

    Google Scholar 

  • Rutledge, J. T., Phillips, W. S. & Mayerhofer, M. J., 2004. Faulting induced by forced fluid injection and fluid flow forced by faulting. Bull. Seism. Soc. Am., 94, 1817–1830.

    Google Scholar 

  • Rutqvist, J., 2012. The Geomechanics of CO2 Storage in Sedimentary Formations. Geotech. Geol. Eng, 30, 525–551.

    Google Scholar 

  • Segall, P., 1989. Earthquakes triggered by fluid extraction. Geology, 17, 942–946.

    Google Scholar 

  • Segall, P. & Lu, S., 2015. Injection-induced seismicity: Poroelastic and earthquake nucleation effects. J. Geophys. Res. Solid Earth, 120, 5082–5103.

    Google Scholar 

  • Segall, P., Grasso, J. R. & Mossop, A., 1994. Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France. Journal of Geophysical Research, 99, 15423–15438.

    Google Scholar 

  • Seithel, R., Müller, B., Zosseder, K., Schilling, F. & Kohl, T., 2018. Betrachtungen der Seismizität um Geothermieanlagen im geomechanischen Kontext. Geothermische Energie, 89/2, 24–27, Berlin.

    Google Scholar 

  • Shapiro, S. A., Dinske, C. & Kummerow, J., 2007. Probability of a given-magnitude earthquake induced by a fluid injection. Geophys. Res. Lett., 34, L22314.

    Google Scholar 

  • Stober, I., 2011. Depth- and pressure-dependent permeability in the upper continental crust: data from the Urach 3 geothermal borehole, southwest Germany. Hydrogeology Journal, 19, 685–699.

    Google Scholar 

  • Stober, I. & Bucher, K., 2007a. Hydraulic properties of the crystalline basement. Hydrogeology Journal, 15, 213–224.

    Google Scholar 

  • Stober, I. & Bucher, K., 2007b. Erratum to: Hydraulic properties of the crystalline basement. Hydrogeology Journal, 15, 1643. (See further correction in Stober & Bucher 2015).

    Google Scholar 

  • Strozzi, T., Tosi, L., Carbognin, L., Wegmüller, U. & Galgaro, A., 1999. Monitoring Land Subsidence in the Euganean Geothermal Basin with Differential SAR Interferometry. (researchgate.net/publication/228916258).

    Google Scholar 

  • Talwani, P., Chen, L. & Gahalaut, K., 2007. Seismogenic permeability, ks. Journal of Geophysical Research, 112, B07309, doi:https://doi.org/10.1029/2006JB004665.

  • Wells, D. L. & Coppersmith, K. J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull. seism. Soc. Am., 84, 974–1002.

    Google Scholar 

  • Wyss, M., 1979. Estimating maximum expectable magnitude of earthquakes from fault dimensions. Geology, 7, 336–340.

    Google Scholar 

  • Zbinden, D., Rinaldi, A. P., Diehl, T. & Wiemer, S., 2019. Induced seismicity during the St. Gallen deep geothermal project, Switzerland: insights from numerical modeling.- Schatzalp, 3rd Induced Seismicity Workshop, Abstract Book, p. 39, Davos.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Stober .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stober, I., Bucher, K. (2021). Environmental Issues Related to Deep Geothermal Systems. In: Geothermal Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-71685-1_11

Download citation

Publish with us

Policies and ethics