Skip to main content

Geothermal Systems in High-Enthalpy Regions

  • Chapter
  • First Online:
Geothermal Energy
  • 2864 Accesses

Abstract

Most of the electrical power produced from geothermal resources worldwide originates from regions with extreme geothermal gradients and very high surface heat-flow. The regions attain high ground temperatures at shallow depth and are typically found in active volcanic areas, young rift systems and similar geological settings. These geothermal sources are also known as high-enthalpy reservoirs or high-enthalpy systems with reference to the high heat content of the reservoir fluid used as heat transfer medium. High-enthalpy systems produce electrical power directly from dry steam or from a high-temperature two-phase fluid in flash-steam plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allis, R. G., 1981. Changes in heat flow associated with exploitation of the Wairakei geothermal field, New Zealand. NZ Journal of Geology & Geophysics, 24, 1–19.

    Google Scholar 

  • Aradóttir, E., Gunnarsson, I., Sigfússon, B., Gíslason, S. R., Oelkers, E. H., Stute, M., Matter, J. M., Snaebjörnsdottir, S. Ó., Mesfin, K. G., Alfredsson, H. A., Hall, J., Arnarsson, M. Th., Dideriksen, K., Júliusson, B. M., Broecker, W. S. & Gunnlaugsson, E., 2015. Towards Cleaner Geothermal Energy: Subsurface Sequestration of Sour Gas Emissions from Geothermal Power Plants. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015.

    Google Scholar 

  • Ármannsson, H., 2016. The fluid geochemistry of Islandic high temperature geothermal areas. Applied Geochemistry, 66, 14-64.

    Google Scholar 

  • Árnason, K., Karlsdóttir, R., Eysteinsson, H., Flóvenz, Ó. G. & Gudlaugsson, S. Th., 2000. The resistivity structure of high-temperature geothermal systems in Iceland. Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 923–928.

    Google Scholar 

  • Barkaoui, A.-E., 2011. Joint 1D inversion of TEM and MT resistivity data with an example from the area around the Eyjafjallajökull glacier, S-Iceland. Geothermal training program, report no. 9, Reykjavik, Iceland, 30 p.

    Google Scholar 

  • Batini, F., Bertini, G., Bottai, A., Burgassi, P., Cappetti, G., Gianelli, G. & Puxeddu, M., 1983. San Pompeo 2 deep well: a high temperature and high pressure geothermal system. In: Strub A, Ungemach P. (eds.): European geothermal update.- Proceedings of the 3rd international seminar on the results of EC geothermal energy research, p. 341–353.

    Google Scholar 

  • Batini, F., Console, R. & Luongo, G., 1985. Seismological study of Larderello – Travale geothermal area. Geothermics, 14/2–3, 255–272.

    Google Scholar 

  • Bertini, G., Giovannoni, A., Stefani, G. C., Gianelli, G., Puxeddu, M. & Squarci, P., 1980. Deep exploration in Larderello field: Sasso 22 drilling venture. Dordrecht: Springer, p. 303–311. https://doi.org/10.1007/978-94-009-9059-3_26.

  • Björnsson, A., Eysteinsson, H. & Beblo, M., 2005. Crustal formation and magma genesis beneath Iceland: magnetotelluric constraints. In: Foulger, G. R., Natland, J. H., Presnall, D. C. & Anderson, D.L. (eds): Plates, plumes and paradigms. Geological Society of America, Spec. Pap., 388, 665–686.

    Google Scholar 

  • Brophy, P., Lippmann, M. J., Dobson, P. F. & Poux, B., 2010, The Geysers Geothermal Field – update 1990–2010.- Geothermal Resources Council, Spec. rep. no. 20.

    Google Scholar 

  • Brown, K., 2011. Thermodynamics and kinetics of silica scaling. Proceedings International Workshop on Mineral Scaling 2011, Manila, Philippines, 25-27 May 2011.

    Google Scholar 

  • Bucher, K. & Grapes, R., 2011. Petrogenesis of Metamorphic Rocks, 8th edition. Springer Verlag, Berlin Heidelberg. 428 pp.

    Google Scholar 

  • Christensen, A., Auken, E. & Sorensen, K., 2006. The transient electromagnetic method. Groundwater Geophysics, 71, 179–225.

    Google Scholar 

  • Clark, D. E., Oelkers, E. H., Gunnarsson, I., Sigfússon, B., Snæbjörnsdóttir, S. Ó., Aradóttir, E. A. & Gíslason, S. R., 2020. CarbFix2: N and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C. Geochimica et Cosmochimica Acta, Vol 279, 45–66.

    Google Scholar 

  • Clynne, M. A., Janik, C. J. & Muffler, L. J. P., 2013. “Hot Water” in Lassen Volcanic National Park – Fumaroles, Steaming Ground, and Boiling Mudpots. USGS Fact Sheet 173–98, 4 p.

    Google Scholar 

  • DiPippo, R., 2012. Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact (3rd edition). Butterworth Heinemann, 600 pp.

    Google Scholar 

  • Elders, W. A. & Friðleifsson, G., 2010. The science program of the Iceland Deep Drilling project (IDDP): a study of supercritical geothermal resources.- Proceedings, World Geothermal Congress, 9 p., Bali, Indonesia.

    Google Scholar 

  • ENEL 1995. Geothermal energy in Tuscany and Northern Latium. ENEL Generation and Transmission, Relations and Communication Department, 50 p., Bagni di Tivoli, Roma.

    Google Scholar 

  • Friðleifsson, G. Ó., Elders, W. A., Zierenberg, R. A., Fowler, A. P. G., Weisenberger, T. B., Mesfin, K. G., Sigurðsson, Ó., Níelsson, S., Einarsson, G., Óskarsson, F., Guðnason, E. Á., Tulinius, H., Hokstad, K., Benoit, G., Frank Nono, F., Loggia, D., Parat, F., Cichy, S.B., Escobedo, D. & Mainprice, D., 2018. The Iceland Deep Drilling Project at Reykjanes: Drilling into the root zone of a black smoker analog. Journal of Volcanology and Geothermal Research, VOLGEO-06435; p. 19.

    Google Scholar 

  • Gallup, D. L., 2009. Production engineering in geothermal technology: a review. Geothermics, 38, 326–334.

    Google Scholar 

  • Garrow, T., 2015. A Methanol Economy based on Renewable Resources.- McGill Green Chemistry Journal, 1, 87–90.

    Google Scholar 

  • Giroud, N., 2008. A Chemical Study of Arsenic, Boron and Gases in High-Temperature Geothermal Fluids in Iceland. Dissertation at the Faculty of Science, University of Iceland, 110 p.

    Google Scholar 

  • Gunnarsson, I, Sigfússon, B., Stefánsson, A., Arnórsson, St., Scott, S. W. & Gunnlaugsson, E., 2011. Injection of H2S from Hellisheiði power plant, Iceland. Proceedings, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31–February 2, 2011. SGP-TR-191

    Google Scholar 

  • Gunnarsson, I., Júlíusson, B. M., Aradóttir, E. S. P. and Arnarson, M. Th., 2015. Pilot scale geothermal gas separation, Hellisheiði Power Plant, Iceland, Proceedings, Proceedings World Geothermal Congress, 19–25 April 2015, Melbourne, Australia.

    Google Scholar 

  • Gunnlaugsson, E., 2008a. District Heating in Reykjavik, past – present – future.- United Nations University, Geothermal Training Programme, 12 p., Reykjavik, Iceland.

    Google Scholar 

  • Gunnlaugsson, E., 2008b. Environmental Management and Monitoring in Iceland: Reinjection and Gas Sequestration at the Hellisheiði Power Plant.- SDG Short Course I on Sustainability and Environmental Management of Geothermal Resource Utilization and the Role of Geothermal in Combating Climate Change, 8 p., Santa Tecla, El Salvador.

    Google Scholar 

  • Gunnlaugsson, E., 2012a Scaling in geothermal installation in Iceland. Short Course on Geothermal Development and Geothermal Wells, 6 p., Santa Tecla, El Salvador.

    Google Scholar 

  • Gunnlaugsson, E., 2012b. Scaling prediction modelling. Short Course on Geothermal Development and Geothermal Wells, 5 p., Santa Tecla, El Salvador.

    Google Scholar 

  • Hauksson, T., Markusson, S., Einarsson, K., Karlsdóttir, S.A., Einarsson, Á., Möller, A. & Sigmarsson, Þ., 2014. Pilot testing of handling the fluids from the IDDP-1 exploratory geothermal well, Krafla, N.E. Iceland. Geothermics, 49, 76–82.

    Google Scholar 

  • Henley, R. W., 1983. pH and silica scaling control in geothermal field development. Geothermics, 12/4, 307–321.

    Google Scholar 

  • Henley, R. W. & Ellis, A. J., 1983. Geothermal Systems Ancient and Modern: A geochemical Review.- Earth-Science Reviews, 19, 1–50.

    Google Scholar 

  • Hjörleifsdóttir, V., Snæbjörnsdóttir, S., Vogfjord, K., Ågústsson, K., Gunnarsson, G. & Hjaltadóttir, S., 2019. Induced earthquakes in the Hellisheiði geothermal field, Iceland. Schatzalp, 3rd Induced Seismicity Workshop, p. 5, Davos.

    Google Scholar 

  • Horner, D. R., 1951. Pressure Build-up in Wells. In: Bull, E. J. (ed.): Proc. 3rd World Petrol. Congr., pp. 503–521, Leiden, Netherlands.

    Google Scholar 

  • Ikeda, R. & Ueda, A., 2017. Experimental field investigations of inhibitors for controlling silica scale in geothermal brine at the Sumikawa geothermal plant, Akita Prefecture, Japan. Geothermics, 70, 305–313.

    Google Scholar 

  • Ikeuchi, K., Doi, N., Sakagawa, Y., Kamenosono, H. & Uchida, T., 1998. High-temperature measurements in well WD-1A and the thermal structure of the Kakkonda geothermal system, Japan. Geothermics, 27, 5/6, 591–607.

    Google Scholar 

  • Markusson, S. H. & Hauksson, T., 2015. Utilization of the Hottest Well in the World, IDDP-1 in Krafla. Proceedings World Geothermal Congress, 6 p., Melbourne, Australia.

    Google Scholar 

  • Mizuno, E., 2013. Geothermal Power Development in New Zealand Lessons for Japan. Research Report, Japan Renewable Energy Foundation, 74 p., Tokyo, Japan.

    Google Scholar 

  • Nicholson, C. & Wesson, R. L., 1990. Earthquake Hazard associated with deep well injection - a report to the U.S. Environmental Protection Agency, pp. 74, U.S. Geological Survey Bulletin.

    Google Scholar 

  • Óladóttir, A. & Friðriksson, P., 2015. The Evolution of CO2 Emissions and Heat Flow through Soil since 2004 in the Utilized Reykjanes Geothermal Area, SW Iceland: Ten Years of Observations on Changes in Geothermal Surface Activity. World Geothermal Congress, 10 p., Melbourne, Australia.

    Google Scholar 

  • Pope, E. C., Bird, D. K., Arnórsson, S. and Giroud, N., 2016. Hydrogeology of the Krafla geothermal system, northeast Iceland. Geofluids, 16, 175–197.

    Google Scholar 

  • Reinsch, T., Dobson, P., Asanuma, H., Huenges, E., Poletto, F. & Sanjuan, B., 2017. Utilizing supercritical geothermal systems: a review of past ventures and ongoing research activities. Geothermal Energy, 5:16, 26 p. https://doi.org/10.1186/s40517-017-0075-y.

  • Remoroza, A. I., 2010. Cacite Mineral Scaling Potentials of High-Temperature Geothermal Wells. Thesis at the Faculty of Science School of Engineering and Natural Sciences, 97 p., Univ. of Iceland, Reykjavik.

    Google Scholar 

  • Rosenkjær, G. K., 2011. Electromagnetic methods in geothermal exploration. 1D and 3D inversion of TEM and MT data from a synthetic geothermal area and the Hengill geothermal area, SW Iceland. University of Iceland, MSc thesis, 137 pp.

    Google Scholar 

  • Rowland, J. V. & Sibson, R. H., 2004. Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids, 4, 259–283.

    Google Scholar 

  • Sherburn, S., Bromley, C., Bannister, S., Sewell, S. & Bourguignon, S., 2015. New Zealand Geothermal Induced Seismicity: an overview. Proceedings World Geothermal Congress, 9 p., Melbourne, Australia.

    Google Scholar 

  • Suárez, M.-C. A. & Samaniego, F., 2012. Deep geothermal reservoirs with water at supercritical conditions. Proceedings 37th workshop on Geothermal Reservoir Engineering, Stanford University, SGP-TR-194, 9 p., Stanford, CA/USA.

    Google Scholar 

  • Sveinbjörnsson, B. M., 2014. Success of High Temperature Geothermal Wells in Iceland. ISOR Iceland Geosurvey, ISOR-2014/053, project-no. 13–0445, 42 p., Reykjavik, Iceland.

    Google Scholar 

  • Thain, I. A., 1998. A brief history oft he Wairakei geothermal power project. GHC Bulletin, 4 p.

    Google Scholar 

  • Thorolfsson, G., 2010. Silencers for Flashing Geothermal Brine, Thirty Years of Experimenting. Proceedings World Geothermal Congress, 4 p., Bali, Indonesia.

    Google Scholar 

  • Tobler, D. J., Stefánsson, A. & Benning, L. G., 2008. In-situ grown silica sinters in Icelandic geothermal areas. Geobiology, 6, 481–502.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Stober .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stober, I., Bucher, K. (2021). Geothermal Systems in High-Enthalpy Regions. In: Geothermal Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-71685-1_10

Download citation

Publish with us

Policies and ethics