Skip to main content

Thermal Structure of the Earth

  • Chapter
  • First Online:
Geothermal Energy

Abstract

The term “renewable energy” is used for a source of energy from a reservoir that can be restored on a “short time scale” (in human time scales). Renewable energy includes geothermal energy and several forms of solar energy such as bio-energy (bio-fuel), hydroelectric, wind-energy, photovoltaic and solar-thermal energy. These sources of energy are converted to heat or electricity for utilization. An example: The “renewable” aspect of burning firewood in a cooking stove lies in the relatively short period of time required to regrow chopped down forests with solar energy and the process of photosynthesis. In contrast, it will take much more time to “renew” coal beds when burning coal for the same purpose, although geological processes will eventually form new coal beds. The “renewable” aspect of geothermal energy will be explained and discussed in detail in this chapter and Chap. 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens, T. J., 1995. Global Earth Physics: a Handbook of Physical Constants. Am. Geophys. Union, 376 pp.

    Book  Google Scholar 

  • Armstead, H. C. H., 1983. Geothermal Energy. E. & F. N. Spon, London, 404 pp.

    Google Scholar 

  • Carslaw, H. S. & Jaeger, J. C., 1959. Conduction of Heat in Solids. Oxford at the Clarendon Press, Oxford, 342 pp.

    Google Scholar 

  • Clauser, C., 2009. Heat Transport Processes in the Earth’s Crust. Surveys in Geophysics, 30, 163–191.

    Article  Google Scholar 

  • Horner, D. R., 1951. Pressure Build-up in Wells. In: Bull, E. J. (ed.): Proc. 3rd World Petrol. Congr., pp. 503–521, Leiden, Netherlands.

    Google Scholar 

  • Kappelmeyer, O. & Haenel, R., 1974. Geothermics with special reference to application, pp. 238, E. Schweizerbart Science Publishers, Stuttgart.

    Google Scholar 

  • Lachenbruch, A. H. & Brewer, M. C., 1959. Dissipation of the temperature effect of drilling a well in Arctic Alaska. - Geological Survey Bulletin, 1083-C: 73–109; Washington.

    Google Scholar 

  • Landolt-Börnstein, 1992. Numerical Data and Funktional Relationships in Science and Technology. In: Physical Properties of Rocks, Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Leblanc, Y., Lam, H.-L., Pascoe, L. J., & Johnes, F. W., 1982. A comparison of two methods of estimating static formation temperature from well logs. Geophys. Prosp., 30, 348-357.

    Article  Google Scholar 

  • Mareschal, J.-C. & Jaupart, C., 2013. Radiogenic heat production, thermal regime and evolution of the continental crust. Tectonophysics, 609, 524-534.

    Article  Google Scholar 

  • Middleton, M. F., 1982. Bottom-hole temperature stabilization with continued circulation of drilling mud. Geophysics, 47, 1716-1723.

    Article  Google Scholar 

  • NCDC, 2002. WMO Global Standard Normals (DSI-9641A), Asheville (USA) (Nat. Climatic Data Center).

    Google Scholar 

  • Pollack, H. N., Hurter, S. J. & Johnson, J. R., 1993. Heat Flow from the Earth’s Interior - Analysis of the Global Data Set. Rev. Geophys, 31, 267-280.

    Article  Google Scholar 

  • REN21., 2017. Renewables 2017 Global Status Report.- Paris Ren21 Secretariat, https://www.ren21.net.

  • Rybach, L., 1976. Radioactive heat production in rocks and its relation to other petrophysical parameters. Pageoph (114), 309–317.

    Google Scholar 

  • Schädel, K. & Stober, I., 1984. The thermal anomaly of Urach seen from a geological perspective (in German). Geol. Abh. Geol. Landesamt Baden-Württemberg, 26, 19-25.

    Google Scholar 

  • Schellschmidt, R. & Stober, I., 2008. Untergrundtemperaturen in Baden-Württemberg.- LGRB-Fachbericht, 2, 28 S., Regierungspräsidium Freiburg.

    Google Scholar 

  • Schön, J., 2004. Physical properties of rocks, pp. 600, Elsevier.

    Google Scholar 

  • Smith, W. H. F. & Wessel, P., 1990. Gridding with continuous curvature splines in tension. Geophysics, 55: 293-305.

    Article  Google Scholar 

  • U.S. Department of Energy., 2016. 2016 Renewable Energy Data Book, Energy Efficiency & Renewable Energy of the National Renewable Energy Laboratory (NREL) (https://www.nrel.gov).

  • VDI, 2001. Use of suburface thermal resources (in German). Union of German Engineers (VDI), Richtlinienreihe, 4640.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Stober .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stober, I., Bucher, K. (2021). Thermal Structure of the Earth. In: Geothermal Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-71685-1_1

Download citation

Publish with us

Policies and ethics