Skip to main content

Recurrent Neural Networks Architectures for Accidental Fall Detection on Wearable Embedded Devices

  • Chapter
  • First Online:
Deep Learning for Biomedical Data Analysis
  • 1132 Accesses

Abstract

Unintentional falls can cause severe injuries and even death, especially if no immediate assistance is given. The aim of Fall Detection Systems (FDSs) is to detect an occurring fall in real time therefore issuing a remote notification. An accurate FDS can drastically improve the quality of life of elderly subjects or any other person at risk. In this chapter we focus on real-time Automatic Fall Detection (AFD) performed onboard smart wearable devices. In particular, in this chapter we discuss the feasibility of AFDs methods based on Deep Learning (DL) techniques that could fit the limited computation power and memory of smaller low-power Micro-Controller Units (MCUs). The chapter proves that a relatively simple Recurrent Neural Network (RNN) architecture, based on two Long Short-Term Memory (LSTM) cells, could be a viable candidate for embedded AFD. Tests were performed using the SisFall dataset, which includes sequences of tri-axial accelerometer and gyroscope readings for simulated falls performed by volunteers. This dataset was further annotated for training the RNN architecture. The resulting AFD method is shown to outperform other methods based on statistical indicators, as reported in the literature. The embedded feasibility of such approach is validated with an implementation for the SensorTile ® by STMicroelectronics hardware architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See http://www.st.com/en/evaluation-tools/steval-stlcs01v1.html.

  2. 2.

    https://bitbucket.org/unipv_cvmlab/sisfalltemporallyannotated/.

References

  1. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI16), pages 265–283, 2016.

    Google Scholar 

  2. Stefano Abbate, Marco Avvenuti, Francesco Bonatesta, Guglielmo Cola, Paolo Corsini, and Alessio Vecchio. A smartphone-based fall detection system. Pervasive and Mobile Computing, 8(6):883–899, 2012.

    Article  Google Scholar 

  3. G. Baldewijns, G. Debard, G. Mertes, T. Croonenborghs, and B. Vanrumste. Improving the accuracy of existing camera based fall detection algorithms through late fusion. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2667–2671, July 2017.

    Google Scholar 

  4. A. Bourke and G. Lyons. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical Engineering & Physics, 30(1):84–90, 2008.

    Article  CAS  Google Scholar 

  5. Eduardo Casilari, Jose A. Santoyo-Ramón, and Jose M. Cano-García. Umafall: A multisensor dataset for the research on automatic fall detection. Procedia Computer Science, 110:32–39, 2017.

    Article  Google Scholar 

  6. P. Feng, M. Yu, S. M. Naqvi, and J. A. Chambers. Deep learning for posture analysis in fall detection. In 2014 19th International Conference on Digital Signal Processing, pages 12–17, Aug 2014.

    Google Scholar 

  7. Jane Fleming and Carol Brayne. Inability to get up after falling, subsequent time on floor, and summoning help: prospective cohort study in people over 90. BMJ, 337, 2008.

    Google Scholar 

  8. Korbinian Frank, Maria Josefa Vera Nadales, Patrick Robertson, and Tom Pfeifer. Bayesian recognition of motion related activities with inertial sensors. In Proceedings of the 12th ACM International Conference - Adjunct Papers on Ubiquitous Computing, UbiComp ’10 Adjunct, pages 445–446, 2010.

    Google Scholar 

  9. Ryan M. Gibson, Abbes Amira, Naeem Ramzan, Pablo Casaseca de-la Higuera, and Zeeshan Pervez. Multiple comparator classifier framework for accelerometer-based fall detection and diagnostic. Applied Soft Computing, 39:94–103, 2016.

    Article  Google Scholar 

  10. Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580, 2012.

    Google Scholar 

  11. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, Nov 1997.

    Article  CAS  Google Scholar 

  12. Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

    Google Scholar 

  13. M. Kepski and B. Kwolek. Fall detection using ceiling-mounted 3d depth camera. In 2014 International Conference on Computer Vision Theory and Applications (VISAPP), volume 2, pages 640–647, Jan 2014.

    Google Scholar 

  14. Q. Li, J. Stankovic, M. Hanson, A. Barth, J. Lach, and G. Zhou. Accurate, fast fall detection using gyroscopes and accelerometer derived posture information. In Wearable and Implantable Body Sensor Networks, pages 138–143, 2009.

    Google Scholar 

  15. Carlos Medrano, Raul Igual, Inmaculada Plaza, and Manuel Castro. Detecting falls as novelties in acceleration patterns acquired with smartphones. PLOS ONE, 9(4):1–9, 04 2014.

    Google Scholar 

  16. O. Mohamed, H. J. Choi, and Y. Iraqi. Fall detection systems for elderly care: A survey. In 2014 6th International Conference on New Technologies, Mobility and Security (NTMS), pages 1–4, March 2014.

    Google Scholar 

  17. Francisco Javier Ordóñez and Daniel Roggen. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors, 16(1):115, 2016.

    Google Scholar 

  18. Natthapon Pannurat, Surapa Thiemjarus, and Ekawit Nantajeewarawat. Automatic Fall Monitoring: A Review. Sensors, 14(7):12900–12936, July 2014.

    Article  Google Scholar 

  19. Angela Sucerquia, José López, and Jesús Vargas-Bonilla. Sisfall: A fall and movement dataset. Sensors, 17(1):198, 2017.

    Google Scholar 

  20. P. Tsinganos and A. Skodras. A smartphone-based fall detection system for the elderly. In Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis, pages 53–58, Sept 2017.

    Google Scholar 

  21. George Vavoulas, Matthew Pediaditis, Charikleia Chatzaki, Emmanouil Spanakis, and Manolis Tsiknakis. The mobifall dataset: Fall detection and classification with a smartphone. International Journal of Monitoring and Surveillance Technologies Research, 2016.

    Google Scholar 

  22. T. Vilarinho, B. Farshchian, D. G. Bajer, O. H. Dahl, I. Egge, S. S. Hegdal, A. Lønes, J. N. Slettevold, and S. M. Weggersen. A combined smartphone and smartwatch fall detection system. In 2015 IEEE International Conference on Computer and Information Technology, pages 1443–1448, Oct 2015.

    Google Scholar 

  23. World Health Organization. WHO global report on falls prevention in older age. World Health Organization Geneva, 2008.

    Google Scholar 

  24. Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. Hello edge: Keyword spotting on microcontrollers. CoRR, abs/1711.07128, 2017.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Regione Lombardia, under the “Home of IoT” project (ID: 139625), co-funded by POR FESR 2014–2020. The authors would like to thank Nicola Blago, Daniele De Martini and Tullio Facchinetti for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirto Musci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Musci, M., Piastra, M. (2021). Recurrent Neural Networks Architectures for Accidental Fall Detection on Wearable Embedded Devices. In: Elloumi, M. (eds) Deep Learning for Biomedical Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-71676-9_4

Download citation

Publish with us

Policies and ethics