Skip to main content

A Deep Learning Model for MicroRNA-Target Binding

  • Chapter
  • First Online:
Deep Learning for Biomedical Data Analysis
  • 1146 Accesses

Abstract

MicroRNAs (miRNAs) are non-coding RNAs of ~21–23 bases length, which play critical role in gene expression. They bind the target mRNAs in the post-transcriptional level and cause translational inhibition or mRNA cleavage. Quick and effective detection of the binding sites of miRNAs is a major problem in bioinformatics. This chapter introduces a new technique to model microRNA-target binding using Recurrent Neural Networks (RNN) over a miRNA-target duplex sequence representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel, D. (2009). MicroRNAs: Target Recognition and Regulatory Functions. Cell. 136(2), PP.215-233.

    Google Scholar 

  2. Bartel, D. (2004). MicroRNAs: Genomics, Biogenesis, Mechanism and Function. Cell. 116, PP.281-297

    Google Scholar 

  3. Xu, B., Hsu, P., Karayiorgou, M. and Gogos, J. (2012). MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiology of Disease, 46(2), pp.291- 301.

    Google Scholar 

  4. Oğul, H., Umu, S., Tuncel, Y. and Akkaya, M. (2011). A probabilistic approach to microRNA-target binding. Biochemical and Biophysical Research Communications, 413(1), pp.111-115.

    Google Scholar 

  5. Wen, M., Cong, P., Zhang, Z., Lu, H. and Li, T. (2018). DeepMirTar: a deep-learning approach for predicting human miRNA targets. Bioinformatics, 34(22), pp.3781-3787.

    Google Scholar 

  6. Needleman, S.B. and Wunsch, C.D. (1970). A general method applicable to the search for similarities in the amino acid sequences of two proteins. J. Mol. Biol., 48, 443–453.

    Google Scholar 

  7. Ding, J., Li, X., Hu, H.: TarPmiR: a new approach for microRNA target site prediction. Bioinformatics. 32, 2768-2775 (2016).

    Google Scholar 

  8. Agarwal, V., Bell, G., Nam, J., Bartel, D.: Predicting effective microRNA target sites in mammalian mRNAs. eLife. 4, (2015).

    Google Scholar 

  9. D. Ron, Y.Singer, N. Tishby, The power of amnesia: learning probabilistic automata with variable memory length, Mach. Learn 25 (1996) 117-149

    Google Scholar 

  10. Menor, M., et al. (2014) mirMark: a site-level and UTR-level classifier for miRNA target prediction. Genome biology,15,500

    Google Scholar 

  11. Helwak, A., et al. (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell, 153, 654-665

    Google Scholar 

  12. D Dede, H Oğul, TriClust: A Tool for Cross-Species Analysis of Gene Regulation, Molecular Informatics 33 (5), 382-387

    Google Scholar 

  13. H.Oğul, M.S.Akkaya, (2011), Data integration in functional analysis of microRNAs, Current Bioinformatics 6, 462-472.

    Google Scholar 

  14. M. Rehmsmeier, P. Steffen, M. Hochmann, et al., Fast and effective prediction of microRNA/target duplexes, RNA 10 (2004) 1507–1517.

    Google Scholar 

  15. M. Hammell, Computational methods to identify miRNA targets, Semin. Cell Dev. Biol. 21 (2010) 738–744.

    Google Scholar 

  16. Y. Yang, Y.P. Wang, K.B. Li, miRTif: a support vector machine-based microRNA target interaction filter, BMC Bioinf. 9 (2008) S4.

    Google Scholar 

  17. Kingma, D.P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980.

    Google Scholar 

  18. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735– 80

    Google Scholar 

  19. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural network. Science 2006, 7, 504–507.

    Google Scholar 

  20. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by backpropagating errors. Nature, 323, 533–536.

    Google Scholar 

  21. M. D. Zeiler, Adadelta: an adaptive learning rate method. arXiv preprint (2012). arXiv:1212.5701

    Google Scholar 

  22. Paker, Ahmet & Ogul, Hasan (2019). mirLSTM: A Deep Sequential Approach to MicroRNA Target Binding Site Prediction. Communications in Computer and Information Science 1062, s 38- 44

    Google Scholar 

  23. C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 2O:l-25, 1995.

    Google Scholar 

  24. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Belmont, California: Wadsworth (1984)

    Google Scholar 

  25. Devroye, L. & Wagner, T.J. (1982) "Nearest neighbor methods in discrimination, In Classification, Pattern Recognition and Reduction of Dimensionality", Handbook of Statistics, 2: 193–197. North-Holland, Amsterdam

    Google Scholar 

  26. Breiman, L. Random forests. Machine Learning, 45(1):5–32, 2001.

    Google Scholar 

  27. Douglas Montgomery, Peck, E., & Vinning, G. (2012). Introduction to Linear Regression Analysis (5th ed.). Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Oğul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paker, A., Oğul, H. (2021). A Deep Learning Model for MicroRNA-Target Binding. In: Elloumi, M. (eds) Deep Learning for Biomedical Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-71676-9_3

Download citation

Publish with us

Policies and ethics