Skip to main content

Brain Tumor Segmentation and Surveillance with Deep Artificial Neural Networks

  • Chapter
  • First Online:
Deep Learning for Biomedical Data Analysis

Abstract

Brain tumor segmentation refers to the process of pixel-level delineation of brain tumor structures in medical images, such as Magnetic Resonance Imaging (MRI). Brain tumor segmentation is required for radiotherapy treatment planning and can diagnosis through surveillance. Automatic segmentation of brain tumors is a challenging problem due to the complex topology of anatomical structures, noise from image acquisition, heterogeneity of signals and spatial/structural variations of tumors. Machine Learning (ML) techniques, including Deep Artificial Neural Networks (DNNs), have shown significant improvement in classification and segmentation tasks. This chapter provides a comprehensive review of supervised learning models and architectures for image segmentation. A particular emphasis will be placed on U-Net and U-Net with Inception and dilated Inception modules for brain tumor segmentation. The performance of the proposed models is evaluated using the multi-modal BRAin Tumor Segmentation (BRATS) benchmark dataset. Furthermore, we present a new Bayesian deep learning framework, called extended Variational Density Propagation (exVDP), for quantifying uncertainty in the decision of DNNs. In particular, exVDP provides a pixel-level uncertainty map associated with the network’s segmentation output. Finally, we present clinical retrospective studies in tumor surveillance using MRI data from patients with glioma and show the advantages accrued from these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7553, p. 436, 2015.

    Google Scholar 

  2. A. A. Aly, S. B. Deris, and N. Zaki, “Research review for digital image segmentation techniques,” International Journal of Computer Science & Information Technology, vol. 3, no. 5, p. 99, 2011.

    Google Scholar 

  3. Stanford, “Tutorial 3: Image segmentation,” https://ai.stanford.edu/~syyeung/cvweb/tutorial3.html.

  4. Marvel, “Marvel movies,” https://www.marvel.com/movies.

  5. S. Gould, T. Gao, and D. Koller, “Region-based segmentation and object detection,” in Advances in neural information processing systems, 2009, pp. 655–663.

    Google Scholar 

  6. S. Yuheng and Y. Hao, “Image segmentation algorithms overview,” arXiv preprint arXiv:1707.02051, 2017.

    Google Scholar 

  7. X. Xu, G. Li, G. Xie, J. Ren, and X. Xie, “Weakly supervised deep semantic segmentation using cnn and elm with semantic candidate regions,” Complexity, vol. 2019, 2019.

    Google Scholar 

  8. mayoclinic, “Braintumor,” https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084.

  9. movies.effects, Instagram, 2019 (accessed August 27, 2020). [Online]. Available: https://www.instagram.com/p/BuOlFbHhjr7/

  10. P. Medicine, “Mipg,” https://www.pennmedicine.org/departments-and-centers/department-of-radiology/radiology-research/labs-and-centers/biomedical-imaging-informatics/medical-image-processing-group.

  11. A. A. of Neurological Surgeons, “Braintumortypes,” https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumors.

  12. PennMedicine, “Common types of brain tumors,” https://www.pennmedicine.org/updates/blogs/neuroscience-blog/2018/november/what-are-the-most-common-types-of-brain-tumors.

  13. S. Bauer, R. Wiest, L.-P. Nolte, and M. Reyes, “A survey of MRI-based medical image analysis for brain tumor studies,” Physics in Medicine & Biology, vol. 58, no. 13, pp. R97–R129, 2013.

    Article  Google Scholar 

  14. A. Bousselham, O. Bouattane, M. Youssfi, and A. Raihani, “Towards reinforced brain tumor segmentation on mri images based on temperature changes on pathologic area,” International journal of biomedical imaging, vol. 2019, 2019.

    Google Scholar 

  15. MayoFoundation, “Biomedical imaging resource,” https://analyzedirect.com/.

  16. NIH, “Neuroimaging informatics technology initiative,” https://nifti.nimh.nih.gov/ and https://brainder.org/2012/09/23/the-nifti-file-format/.

  17. R. D. Vincent, P. Neelin, N. Khalili-Mahani, A. L. Janke, V. S. Fonov, S. M. Robbins, L. Baghdadi, J. Lerch, J. G. Sled, R. Adalat, D. MacDonald, A. P. Zijdenbos, D. L. Collins, and A. C. Evans, “Minc 2.0: A flexible format for multi-modal images,” Frontiers in Neuroinformatics, vol. 10, p. 35, 2016. [Online]. Available: https://www.frontiersin.org/article/10.3389/fninf.2016.00035

  18. P. Scanners, “parrec,” https://nipy.org/nibabel/reference/nibabel.parrec.html.

  19. NRRD, “Nearly raw raster data,” http://teem.sourceforge.net/nrrd/.

  20. DICOM, “Digital imaging and communications in medicine,” https://www.dicomstandard.org/about-home.

  21. M. Larobina and L. Murino, “Medical image file formats,” Journal of digital imaging, vol. 27, no. 2, pp. 200–206, 2014.

    Article  PubMed  Google Scholar 

  22. N. C. Institute, “surveillance,” https://www.cancer.gov/publications/dictionaries/cancer-terms/def/surveillance.

  23. RCCA, “Active surveillance: Its role in low-risk cancer,” https://www.regionalcancercare.org/services/active-surveillance/.

  24. K. L. Penney, M. J. Stampfer, J. L. Jahn, J. A. Sinnott, R. Flavin, J. R. Rider, S. Finn, E. Giovannucci, H. D. Sesso, M. Loda et al., “Gleason grade progression is uncommon,” Cancer research, vol. 73, no. 16, pp. 5163–5168, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R. Szeliski, Computer vision: algorithms and applications. Springer Science & Business Media, 2010.

    Google Scholar 

  26. V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,” arXiv preprint arXiv:1603.07285, 2016.

    Google Scholar 

  27. ——, “Convolution arithmetic,” https://www.github.com/vdumoulin/conv_arithmetic.

  28. C. Sinai, “Brain tumors and brain cancer,” https://www.cedars-sinai.org/health-library/diseases-and-conditions/b/brain-tumors-and-brain-cancer.html.

  29. R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2019,” CA: a cancer journal for clinicians, vol. 69, no. 1, pp. 7–34, 2019.

    Google Scholar 

  30. E. C. Holland, “Progenitor cells and glioma formation,” Current opinion in neurology, vol. 14, no. 6, pp. 683–688, 2001.

    Article  CAS  PubMed  Google Scholar 

  31. J. C. Buckner, “Factors influencing survival in high-grade gliomas,” in Seminars in oncology, vol. 30. Elsevier, 2003, pp. 10–14.

    Google Scholar 

  32. J. Lemke, J. Scheele, T. Kapapa, S. Von Karstedt, C. R. Wirtz, D. Henne-Bruns, and M. Kornmann, “Brain metastases in gastrointestinal cancers: is there a role for surgery?” International journal of molecular sciences, vol. 15, no. 9, pp. 16 816–16 830, 2014.

    Google Scholar 

  33. R. C. Miner, “Image-guided neurosurgery,” Journal of medical imaging and radiation sciences, vol. 48, no. 4, pp. 328–335, 2017.

    Article  PubMed  Google Scholar 

  34. M. E. Karar, D. R. Merk, V. Falk, and O. Burgert, “A simple and accurate method for computer-aided transapical aortic valve replacement,” Computerized Medical Imaging and Graphics, vol. 50, pp. 31–41, 2016.

    Article  PubMed  Google Scholar 

  35. N. Sharma and L. M. Aggarwal, “Automated medical image segmentation techniques,” Journal of medical physics/Association of Medical Physicists of India, vol. 35, no. 1, p. 3, 2010.

    Google Scholar 

  36. L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster analysis. John Wiley & Sons, 2009, vol. 344.

    Google Scholar 

  37. A. K. Jain, A. Topchy, M. H. Law, and J. M. Buhmann, “Landscape of clustering algorithms,” in Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., vol. 1. IEEE, 2004, pp. 260–263.

    Google Scholar 

  38. A. K. Jain, R. P. Duin, and J. Mao, “Statistical pattern recognition: A review, ieee transactions on pattern analysis and machine intelligence,” vol, vol. 22, 2000.

    Google Scholar 

  39. A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-Hall, Inc., 1988.

    Google Scholar 

  40. C. R. Brice and C. L. Fennema, “Scene analysis using regions,” Artificial intelligence, vol. 1, no. 3–4, pp. 205–226, 1970.

    Article  Google Scholar 

  41. E. M. Riseman and M. A. Arbib, “Computational techniques in the visual segmentation of static scenes,” Computer Graphics and Image Processing, vol. 6, no. 3, pp. 221–276, 1977.

    Article  Google Scholar 

  42. T. Pavlidis, Structural pattern recognition. Springer, 1977.

    Book  Google Scholar 

  43. R. Ohlander, K. Price, and D. R. Reddy, “Picture segmentation using a recursive region splitting method,” Computer graphics and image processing, vol. 8, no. 3, pp. 313–333, 1978.

    Article  Google Scholar 

  44. A. Rosenfeld and L. S. Davis, “Image segmentation and image models,” Proceedings of the IEEE, vol. 67, no. 5, pp. 764–772, 1979.

    Article  Google Scholar 

  45. R. M. Haralick and L. G. Shapiro, “Image segmentation techniques,” Computer vision, graphics, and image processing, vol. 29, no. 1, pp. 100–132, 1985.

    Article  Google Scholar 

  46. A. Blake and M. Isard, Active contours: the application of techniques from graphics, vision, control theory and statistics to visual tracking of shapes in motion. Springer Science & Business Media, 2012.

    Google Scholar 

  47. D. Cremers, M. Rousson, and R. Deriche, “A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape,” International journal of computer vision, vol. 72, no. 2, pp. 195–215, 2007.

    Article  Google Scholar 

  48. P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation,” International journal of computer vision, vol. 59, no. 2, pp. 167–181, 2004.

    Article  Google Scholar 

  49. D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE Transactions on pattern analysis and machine intelligence, vol. 24, no. 5, pp. 603–619, 2002.

    Article  Google Scholar 

  50. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.

    Google Scholar 

  51. S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann, K. Farahani, and C. Davatzikos, “Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features,” Scientific data, vol. 4, p. 170117, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  52. J. Malik, S. Belongie, T. Leung, and J. Shi, “Contour and texture analysis for image segmentation,” International journal of computer vision, vol. 43, no. 1, pp. 7–27, 2001.

    Article  Google Scholar 

  53. X. Liu, Z. Deng, and Y. Yang, “Recent progress in semantic image segmentation,” Artificial Intelligence Review, vol. 52, no. 2, pp. 1089–1106, 2019.

    Article  Google Scholar 

  54. K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition,” in Competition and cooperation in neural nets. Springer, 1982, pp. 267–285.

    Google Scholar 

  55. Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech, and time series,” The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995, 1995.

    Google Scholar 

  56. J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai et al., “Recent advances in convolutional neural networks,” Pattern Recognition, vol. 77, pp. 354–377, 2018.

    Article  Google Scholar 

  57. M. Nielsen, “Ch-4: A visual proof that neural nets can compute any function,” http://neuralnetworksanddeeplearning.com/chap4.html.

  58. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

    Article  Google Scholar 

  59. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

    Article  CAS  PubMed  Google Scholar 

  60. I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning book,” MIT Press, vol. 521, no. 7553, p. 800, 2016.

    Google Scholar 

  61. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems, 2014, pp. 2672–2680.

    Google Scholar 

  62. A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme recognition using time-delay neural networks,” IEEE transactions on acoustics, speech, and signal processing, vol. 37, no. 3, pp. 328–339, 1989.

    Article  Google Scholar 

  63. S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image segmentation using deep learning: A survey,” arXiv preprint arXiv:2001.05566, 2020.

    Google Scholar 

  64. V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros et al., “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,” Jama, vol. 316, no. 22, pp. 2402–2410, 2016.

    Article  PubMed  Google Scholar 

  65. A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, “Dermatologist-level classification of skin cancer with deep neural networks,” nature, vol. 542, no. 7639, pp. 115–118, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net: learning dense volumetric segmentation from sparse annotation,” in International conference on medical image computing and computer-assisted intervention. Springer, 2016, pp. 424–432.

    Google Scholar 

  67. F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, “Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge,” in International MICCAI Brainlesion Workshop. Springer, 2017, pp. 287–297.

    Google Scholar 

  68. G. Wang, W. Li, S. Ourselin, and T. Vercauteren, “Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks,” in International MICCAI brainlesion workshop. Springer, 2017, pp. 178–190.

    Google Scholar 

  69. L. Sun, S. Zhang, and L. Luo, “Tumor segmentation and survival prediction in glioma with deep learning,” in International MICCAI Brainlesion Workshop. Springer, 2018, pp. 83–93.

    Google Scholar 

  70. D. E. Cahall, G. Rasool, N. C. Bouaynaya, and H. M. Fathallah-Shaykh, “Inception modules enhance brain tumor segmentation,” Frontiers in computational neuroscience, vol. 13, p. 44, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  71. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

    Google Scholar 

  72. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

    Google Scholar 

  73. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

    Google Scholar 

  74. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

    Google Scholar 

  75. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

    Google Scholar 

  76. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.

    Google Scholar 

  77. Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-aware semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2359–2367.

    Google Scholar 

  78. Y. Yuan, M. Chao, and Y.-C. Lo, “Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance,” IEEE transactions on medical imaging, vol. 36, no. 9, pp. 1876–1886, 2017.

    Article  PubMed  Google Scholar 

  79. N. Liu, H. Li, M. Zhang, J. Liu, Z. Sun, and T. Tan, “Accurate iris segmentation in non-cooperative environments using fully convolutional networks,” in 2016 International Conference on Biometrics (ICB). IEEE, 2016, pp. 1–8.

    Google Scholar 

  80. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention. Springer, 2015, pp. 234–241.

    Google Scholar 

  81. F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric medical image segmentation,” in 2016 fourth international conference on 3D vision (3DV). IEEE, 2016, pp. 565–571.

    Google Scholar 

  82. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125.

    Google Scholar 

  83. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2881–2890.

    Google Scholar 

  84. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848, 2017.

    Article  PubMed  Google Scholar 

  85. F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville, and Y. Bengio, “Renet: A recurrent neural network based alternative to convolutional networks,” arXiv preprint arXiv:1505.00393, 2015.

    Google Scholar 

  86. F. Visin, M. Ciccone, A. Romero, K. Kastner, K. Cho, Y. Bengio, M. Matteucci, and A. Courville, “Reseg: A recurrent neural network-based model for semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016, pp. 41–48.

    Google Scholar 

  87. Y. Xiang and D. Fox, “Da-rnn: Semantic mapping with data associated recurrent neural networks,” arXiv preprint arXiv:1703.03098, 2017.

    Google Scholar 

  88. Y. Yuan and J. Wang, “Ocnet: Object context network for scene parsing,” arXiv preprint arXiv:1809.00916, 2018.

    Google Scholar 

  89. X. Li, Z. Zhong, J. Wu, Y. Yang, Z. Lin, and H. Liu, “Expectation-maximization attention networks for semantic segmentation,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 9167–9176.

    Google Scholar 

  90. Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu, “Ccnet: Criss-cross attention for semantic segmentation,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 603–612.

    Google Scholar 

  91. P. S. of Medicine University of Pennsylvania, “Brain tumor segmentation,” http://braintumorsegmentation.org/.

  92. D. Group, “Medical imaging computing and computerassisted intervention,” https://miccai2020.org/en/.

  93. S. Bakas et al., “Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge,” arXiv [Preprint], 2018.

    Google Scholar 

  94. J. Menze, Bjoern H et al., “The multimodal brain tumor image segmentation benchmark (brats),” IEEE transactions on medical imaging, vol. 34, no. 10, pp. 1993–2024, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  95. M. Livne, J. Rieger, O. U. Aydin, A. A. Taha, E. M. Akay, T. Kossen, J. Sobesky, J. D. Kelleher, K. Hildebrand, D. Frey et al., “A u-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease,” Frontiers in neuroscience, vol. 13, p. 97, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  96. H. Dong, G. Yang, F. Liu, Y. Mo, and Y. Guo, “Automatic brain tumor detection and segmentation using u-net based fully convolutional networks,” in annual conference on medical image understanding and analysis. Springer, 2017, pp. 506–517.

    Google Scholar 

  97. F. Girard, C. Kavalec, and F. Cheriet, “Joint segmentation and classification of retinal arteries/veins from fundus images,” Artificial intelligence in medicine, vol. 94, pp. 96–109, 2019.

    Article  PubMed  Google Scholar 

  98. K. Kamnitsas, C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane, D. K. Menon, D. Rueckert, and B. Glocker, “Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation,” Medical image analysis, vol. 36, pp. 61–78, 2017.

    Article  PubMed  Google Scholar 

  99. P. Sandur, C. Naveena, V. M. Aradhya, and K. Nagasundara, “Segmentation of brain tumor tissues in hgg and lgg mr images using 3d u-net convolutional neural network,” International Journal of Natural Computing Research (IJNCR), vol. 7, no. 2, pp. 18–30, 2018.

    Article  Google Scholar 

  100. X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P.-A. Heng, “H-denseunet: hybrid densely connected unet for liver and tumor segmentation from ct volumes,” IEEE transactions on medical imaging, vol. 37, no. 12, pp. 2663–2674, 2018.

    Article  PubMed  Google Scholar 

  101. Z. Zeng, W. Xie, Y. Zhang, and Y. Lu, “Ric-unet: An improved neural network based on unet for nuclei segmentation in histology images,” Ieee Access, vol. 7, pp. 21 420–21 428, 2019.

    Google Scholar 

  102. J. I. Orlando, P. Seeböck, H. Bogunović, S. Klimscha, C. Grechenig, S. Waldstein, B. S. Gerendas, and U. Schmidt-Erfurth, “U2-net: A bayesian u-net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological oct scans,” in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE, 2019, pp. 1441–1445.

    Google Scholar 

  103. S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, J. Freymann, K. Farahani, and C. Davatzikos, “Segmentation labels and radiomic features for the pre-operative scans of the tcga-lgg collection,” The cancer imaging archive, vol. 286, 2017.

    Google Scholar 

  104. M. Havaei et al., “Brain tumor segmentation with deep neural networks,” Medical image analysis, vol. 35, pp. 18–31, 2017.

    Article  PubMed  Google Scholar 

  105. S. S. M. Salehi, D. Erdogmus, and A. Gholipour, “Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging,” IEEE Transactions on Medical Imaging, vol. 36, no. 11, p. 2319–2330, 2017.

    Article  PubMed Central  Google Scholar 

  106. S. M. Shankaranarayana, K. Ram, K. Mitra, and M. Sivaprakasam, “Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation,” IEEE Journal of Biomedical and Health Informatics, 2019.

    Google Scholar 

  107. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-resnet and the impact of residual connections on learning,” arXiv preprint arXiv:1602.07261, 2016.

    Google Scholar 

  108. F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv preprint arXiv:1511.07122, 2015.

    Google Scholar 

  109. N. Ibtehaz and M. S. Rahman, “MultiResUNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation,” arXiv [Preprint], 2019.

    Google Scholar 

  110. C. Wang, M. Rajchl, A. Chan, and E. Ukwatta, “An ensemble of U-Net architecture variants for left atrial segmentation,” in Medical Imaging 2019: Computer-Aided Diagnosis, vol. 10950. International Society for Optics and Photonics, 2019, p. 109500M, (San Diego, CA, USA).

    Google Scholar 

  111. S. Li and G. K. F. Tso, “Bottleneck supervised u-net for pixel-wise liver and tumor segmentation,” arXiv preprint arXiv:1810.10331, 2018.

    Google Scholar 

  112. H. Li, A. Li, and M. Wang, “A novel end-to-end brain tumor segmentation method using improved fully convolutional networks,” Computers in biology and medicine, vol. 108, pp. 150–160, 2019.

    Article  PubMed  Google Scholar 

  113. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

    Google Scholar 

  114. C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions: Comparison of trends in practice and research for deep learning,” arXiv preprint arXiv:1811.03378, 2018.

    Google Scholar 

  115. W. Shi, F. Jiang, and D. Zhao, “Single image super-resolution with dilated convolution based multi-scale information learning inception module,” in 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017, pp. 977–981.

    Google Scholar 

  116. S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint arXiv:1609.04747, 2016.

    Google Scholar 

  117. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

    Google Scholar 

  118. K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” 2015 IEEE International Conference on Computer Vision (ICCV), 2015, (Santiago, Chile).

    Google Scholar 

  119. F. Chollet et al., “Keras,” https://keras.io, 2015.

  120. M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” in 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016, pp. 265–283, (Savannah, GA, USA). [Online]. Available: https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

  121. Google, “Gpus on compute engine,” https://cloud.google.com/compute/docs/gpus.

  122. F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, “No New-Net,” in International MICCAI Brainlesion Workshop. Springer, 2018, pp. 234–244, (Granada, Spain).

    Google Scholar 

  123. P.-Y. Kao, T. Ngo, A. Zhang, J. W. Chen, and B. Manjunath, “Brain Tumor Segmentation and Tractographic Feature Extraction from Structural MR Images for Overall Survival Prediction,” in International MICCAI Brainlesion Workshop. Springer, 2018, pp. 128–141, (Granada, Spain).

    Google Scholar 

  124. J. Zhang, X. Lv, Q. Sun, Q. Zhang, X. Wei, and B. Liu, “Sdresu-net: Separable and dilated residual u-net for mri brain tumor segmentation,” Current Medical Imaging Formerly Current Medical Imaging Reviews, vol. 15, 08 2019.

    Google Scholar 

  125. D. Dera, G. Rasool, and N. Bouaynaya, “Extended variational inference for propagating uncertainty in convolutional neural networks,” in IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), Oct 2019, pp. 1–6.

    Google Scholar 

  126. D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review for statisticians,” Journal of the American Statistical Association, vol. 112, no. 518, pp. 859–877, 2017.

    Article  CAS  Google Scholar 

  127. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th ed. McGraw-Hill Higher Education, 2002.

    Google Scholar 

  128. M. Bishop, Pattern Recognition & Machine Learning. New York: Springer, Aug. 2006.

    Google Scholar 

  129. D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley-Interscience, 2006.

    Book  Google Scholar 

  130. S. Pereira, A. Pinto, V. Alves, and C. A. Silva, “Brain tumor segmentation using convolutional neural networks in MRI images,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1240–1251, 2016.

    Article  PubMed  Google Scholar 

  131. N. C. Institute, “Prostate-specific antigen,” https://www.cancer.gov/types/prostate/psa-fact-sheet/.

  132. M. Basseville, I. V. Nikiforov et al., Detection of abrupt changes: theory and application. prentice Hall Englewood Cliffs, 1993, vol. 104.

    Google Scholar 

  133. E. Brodsky and B. S. Darkhovsky, Nonparametric methods in change point problems. Springer Science & Business Media, 2013, vol. 243.

    Google Scholar 

  134. C.-J. Kim, J. C. Morley, and C. R. Nelson, “The structural break in the equity premium,” Journal of Business & Economic Statistics, vol. 23, no. 2, pp. 181–191, 2005.

    Article  Google Scholar 

  135. A. B. Olshen, E. Venkatraman, R. Lucito, and M. Wigler, “Circular binary segmentation for the analysis of array-based dna copy number data,” Biostatistics, vol. 5, no. 4, pp. 557–572, 2004.

    Article  PubMed  Google Scholar 

  136. A. Futschik, T. Hotz, A. Munk, and H. Sieling, “Multiscale dna partitioning: statistical evidence for segments,” Bioinformatics, vol. 30, no. 16, pp. 2255–2262, 2014.

    Article  CAS  PubMed  Google Scholar 

  137. J. Reeves, J. Chen, X. L. Wang, R. Lund, and Q. Q. Lu, “A review and comparison of changepoint detection techniques for climate data,” Journal of applied meteorology and climatology, vol. 46, no. 6, pp. 900–915, 2007.

    Article  Google Scholar 

  138. O. Andrén, K. Fall, L. Franzén, S.-O. Andersson, J.-E. Johansson, and M. A. Rubin, “How well does the gleason score predict prostate cancer death? a 20-year followup of a population based cohort in sweden,” The Journal of urology, vol. 175, no. 4, pp. 1337–1340, 2006.

    Article  PubMed  Google Scholar 

  139. N. C. Institute, “Seer program,” https://seer.cancer.gov/registries/cancer_registry/index.html, 2020.

  140. K. Y. Bilimoria, A. K. Stewart, D. P. Winchester, and C. Y. Ko, “The national cancer data base: a powerful initiative to improve cancer care in the united states,” Annals of surgical oncology, vol. 15, no. 3, pp. 683–690, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  141. CDC, “Ncpr,” https://www.cdc.gov/cancer/npcr/index.htm, 2020.

  142. CBTR-US, “Central brain tumor registry of the us,” https://cbtrus.org/, 2020.

  143. A. G. Lai, L. Pasea, A. Banerjee, S. Denaxas, M. Katsoulis, W. H. Chang, B. Williams, D. Pillay, M. Noursadeghi, D. Linch et al., “Estimating excess mortality in people with cancer and multimorbidity in the covid-19 emergency,” medRxiv, 2020.

    Google Scholar 

  144. HDR-UK, “The health data research hub for cancer,” https://www.hdruk.ac.uk/help-with-your-data/our-hubs-across-the-uk/data-can/, 2020.

  145. M. Otth and K. Scheinemann, “Surveillance imaging for high-grade childhood brain tumors: What to do 10 years after completion of treatment?” Pediatric blood & cancer, vol. 65, no. 11, p. e27311, 2018.

    Google Scholar 

  146. Q. T. Ostrom, D. J. Cote, M. Ascha, C. Kruchko, and J. S. Barnholtz-Sloan, “Adult glioma incidence and survival by race or ethnicity in the united states from 2000 to 2014,” JAMA oncology, vol. 4, no. 9, pp. 1254–1262, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  147. D. J. Cote, Q. T. Ostrom, H. Gittleman, K. R. Duncan, T. S. CreveCoeur, C. Kruchko, T. R. Smith, M. J. Stampfer, and J. S. Barnholtz-Sloan, “Glioma incidence and survival variations by county-level socioeconomic measures,” Cancer, vol. 125, no. 19, pp. 3390–3400, 2019.

    Article  PubMed  Google Scholar 

  148. C. Kruchko, Q. T. Ostrom, H. Gittleman, and J. S. Barnholtz-Sloan, “The cbtrus story: providing accurate population-based statistics on brain and other central nervous system tumors for everyone,” 2018.

    Google Scholar 

  149. Q. T. Ostrom, H. Gittleman et al., “CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015,” Neuro-Oncology, vol. 20, 10 2018. [Online]. Available: https://doi.org/10.1093/neuonc/noy131

  150. R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2020,” CA: a cancer journal for clinicians, vol. 70, no. 1, pp. 7–30, 2020.

    Google Scholar 

  151. N. I. for Health and C. E. G. Britain), Brain tumours (primary) and brain metastases in adults. National Institute for Health and Care Excellence, 2018.

    Google Scholar 

  152. H. M. Fathallah-Shaykh, A. DeAtkine, E. Coffee, E. Khayat, A. K. Bag, X. Han, P. P. Warren, M. Bredel, J. Fiveash, J. Markert, N. Bouaynaya, and L. B. Nabors, “Diagnosing growth in low-grade gliomas with and without longitudinal volume measurements: A retrospective observational study,” PLOS Medicine, vol. 16, no. 5, pp. 1–16, 05 2019. [Online]. Available: https://doi.org/10.1371/journal.pmed.1002810

Download references

Acknowledgements

This work was supported by the National Science Foundation Awards NSF ECCS-1903466 and NSF DUE-1610911.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Waqas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waqas, A., Dera, D., Rasool, G., Bouaynaya, N.C., Fathallah-Shaykh, H.M. (2021). Brain Tumor Segmentation and Surveillance with Deep Artificial Neural Networks. In: Elloumi, M. (eds) Deep Learning for Biomedical Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-71676-9_13

Download citation

Publish with us

Policies and ethics