Skip to main content

Using Deep Learning with Canadian Primary Care Data for Disease Diagnosis

  • Chapter
  • First Online:
Deep Learning for Biomedical Data Analysis

Abstract

The majority of Canadian primary care systems record patient data in the form of Electronic Medical Records (EMR). EMRs hold structured, semi-structured and unstructured demographic and health care data about patients. The value of EMR data for research, health surveillance and quality improvement continues to be explored. Data analytics such as Machine Learning (ML) and statistical modeling techniques have been applied to de-identified EMR data repositories to advance our understanding of different health conditions and patient care. More recently, the application of Deep Learning (DL) approaches to structured, semi-structured and unstructured data of the EMRs is being investigated as an avenue for improved identification of health conditions. Supervised ML methods have dominated disease classification for more prevalent diseases. A large cohort of labeled data is required to train ML models using supervised learning methods. For less common diseases, the amount of available labeled data is often insufficient, and a variety of strategies are being explored to deal with inadequate, noisy and missing data. This chapter describes the benefits of using DL models with EMR data for research to improve provisioning of health care in primary care settings. A few prominent DL models such as Multi-Layered Perceptron (MLP), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) are discussed with example scenarios that demonstrate application of some of these predictive analytics models to both structured and unstructured EMR data using regular and weak supervision methods for diagnosing both prevalent and non-prevalent diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, F., & Gupta, N. (2015). Progress in electronic medical record adoption in Canada. Canadian Family Physician, 61(12), 1076-1084.

    PubMed Central  Google Scholar 

  2. Marrie, R. A., Kosowan, L., Taylor, C., & Singer, A. (2019). Identifying people with multiple sclerosis in the Canadian primary care sentinel surveillance network. Multiple Sclerosis Journal–Experimental, Translational and Clinical

    Book  Google Scholar 

  3. Cave, A. J., Davey, C., Ahmadi, E., Drummond, N., Fuentes, S., Kazemi-Bajestani, S. M. R., ... & Taylor, M. (2016). Development of a validated algorithm for the diagnosis of paediatric asthma in electronic medical records. NPJ primary care respiratory medicine, 26(1), 1-4.

    Google Scholar 

  4. Kosowan, L., Wicklow, B., Queenan, J., Yeung, R., Amed, S., & Singer, A. (2019). Enhancing Health Surveillance: Validation of a Novel Electronic Medical Records-Based Definition of Cases of Pediatric Type 1 and Type 2 Diabetes Mellitus. Canadian journal of diabetes, 43(6), 392-398.

    Article  PubMed  Google Scholar 

  5. Williamson, T., Green, M. E., Birtwhistle, R., Khan, S., Garies, S., Wong, S. T., ... & Drummond, N. (2014). Validating the 8 CPCSSN case definitions for chronic disease surveillance in a primary care database of electronic health records. The Annals of Family Medicine, 12(4), 367-372.

    Google Scholar 

  6. Singer, A., Kosowan, L., Katz, A., Ronksley, P., McBrien, K., Halas, G., & Williamson, T. (2020). Characterizing patients with high use of the primary and tertiary care systems: A retrospective cohort study. Health Policy, 124(3), 291-297.

    Article  PubMed  Google Scholar 

  7. Zafari, H.,Langlois, S.,Zulkernine, F., Kosowan, L., & Singer, A. (2020). Predicting Chronic Obstructive Pulmonary Disease from EMR data. International Conference on Computational Intelligence in Bioinformatics and Computational Biology.

    Book  Google Scholar 

  8. Birtwhistle, R. V. (2011). Canadian Primary Care Sentinel Surveillance Network: A developing resource for family medicine and public health. Canadian Family Physician, 57(10), 1219-1220.

    Google Scholar 

  9. Queenan, J. A., Williamson, T., Khan, S., Drummond, N., Garies, S., Morkem, R., & Birtwhistle, R. (2016). Representativeness of patients and providers in the Canadian Primary Care Sentinel Surveillance Network: a cross-sectional study. CMAJ open, 4(1), E28.

    Google Scholar 

  10. TCPS-2. (2014). Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, and Social Sciences and Humanities Research Council of Canada. Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans.

    Google Scholar 

  11. Kotecha, J. A., Manca, D., Lambert-Lanning, A., Keshavjee, K., Drummond, N., Godwin, M., ... & Birtwhistle, R. (2011). Ethics and privacy issues of a practice-based surveillance system: Need for a national-level institutional research ethics board and consent standards. Canadian Family Physician, 57(10), 1165-1173.

    Google Scholar 

  12. Oake, J., Aref-Eshghi, E., Godwin, M., Collins, K., Aubrey-Bassler, K., Duke, P., ... & Asghari, S. (2017). Using electronic medical record to identify patients with dyslipidemia in primary care settings: international classification of disease code matters from one region to a national database. Biomedical informatics insights, 9, 1178222616685880.

    Google Scholar 

  13. Bello, A. K., Ronksley, P. E., Tangri, N., Kurzawa, J., Osman, M. A., Singer, A., ... & Lindeman, C. (2019). Prevalence and demographics of CKD in Canadian primary care practices: a cross-sectional study. Kidney international reports, 4(4), 561-570.

    Google Scholar 

  14. Queenan, J. A., Farahani, P., Ehsani-Moghadam, B., & Birtwhistle, R. V. (2018). The prevalence and risk for herpes zoster infection in adult patients with diabetes mellitus in the Canadian Primary Care Sentinel Surveillance Network. Canadian journal of diabetes, 42(5), 465-469.

    Google Scholar 

  15. Zafari, H.,Zulkernine, Singer, A., & Kosowan, L. (2019). Weakly Supervised Text Classification for Assisting Patient Data Processing,” in the 10th annual conference hosted by the Canadian Institute for Military and Veteran Health Research (CIMVHR).

    Google Scholar 

  16. Telus: https://www.telus.com, last accessed 2020/8/28

  17. QHR Technologies: https://qhrtechnologies.com/, last accessed 2020/8/28

  18. OSCAR EMR: https://oscar-emr.com/oscar/, last accessed 2020/8/28

  19. LaFreniere, D., Zulkernine, F., Barber, D., & Martin, K. (2016, December). Using machine learning to predict hypertension from a clinical dataset. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-7). IEEE.

    Google Scholar 

  20. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.

    Article  Google Scholar 

  21. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.

    Article  PubMed  Google Scholar 

  22. Oh, K. S., & Jung, K. (2004). GPU implementation of neural networks. Pattern Recognition, 37(6), 1311-1314.

    Article  Google Scholar 

  23. Chellapilla, K., Puri, S., & Simard, P. (2006, October). High performance convolutional neural networks for document processing.

    Google Scholar 

  24. OSCAR Canada: About OSCAR, http://oscarcanada.org/about-oscar/brief-overview, last accessed 2020/8/28.

  25. Xiao, L., Cousins, G., Fahey, T., Dimitrov, B. D., & Hederman, L. (2012, October). Developing a rule-driven clinical decision support system with an extensive and adaptative architecture. In 2012 IEEE 14th International Conference on e-Health Networking, Applications and Services (Healthcom) (pp. 250-254). IEEE.

    Google Scholar 

  26. Achour, S. L., Dojat, M., Rieux, C., Bierling, P., & Lepage, E. (2001). A UMLS-based knowledge acquisition tool for rule-based clinical decision support system development. Journal of the American Medical Informatics Association, 8(4), 351-360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuo, K. L., & Fuh, C. S. (2011). A rule-based clinical decision model to support interpretation of multiple data in health examinations. Journal of medical systems, 35(6), 1359-1373.

    Article  PubMed  Google Scholar 

  28. Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016, December). Doctor ai: Predicting clinical events via recurrent neural networks. In Machine Learning for Healthcare Conference (pp. 301-318).

    Google Scholar 

  29. Liu, J., Zhang, Z., & Razavian, N. (2018). Deep ehr: Chronic disease prediction using medical notes. arXiv preprint arXiv:1808.04928..

    Google Scholar 

  30. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2017). Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE journal of biomedical and health informatics, 22(5), 1589-1604.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Judd, M., Zulkernine, F., Wolfrom, B., Barber, D., & Rajaram, A. (2018, September). Detecting low back pain from clinical narratives using machine learning approaches. In International Conference on Database and Expert Systems Applications (pp. 126-137). Springer, Cham.

    Google Scholar 

  32. Kaczmarek, E., Salgo, A., Zafari, H., Kosowan, L., Singer, A., & Zulkernine, F. (2019, December). Diagnosing PTSD using electronic medical records from canadian primary care data. In Proceedings of the 6th International Conference on Networking, Systems and Security (pp. 23-29).

    Google Scholar 

  33. Braunstein, M. L. (2015, June). Patient—Physician collaboration on FHIR (Fast Healthcare Interoperability Resources). In 2015 International Conference on Collaboration Technologies and Systems (CTS) (pp. 501-503). IEEE.

    Google Scholar 

  34. Coleman, N., Halas, G., Peeler, W., Casaclang, N., Williamson, T., & Katz, A. (2015). From patient care to research: a validation study examining the factors contributing to data quality in a primary care electronic medical record database. BMC family practice, 16(1), 11.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shortliffe, E. H. (1986). Medical expert systems—knowledge tools for physicians. Western Journal of Medicine, 145(6), 830.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Miller, R. A., McNeil, M. A., Challinor, S. M., Masarie Jr, F. E., & Myers, J. D. (1986). The INTERNIST-1/quick medical REFERENCE project—Status report. Western Journal of Medicine, 145(6), 816.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Pauker, S. G., Gorry, G. A., Kassirer, J. P., & Schwartz, W. B. (1976). Towards the simulation of clinical cognition: taking a present illness by computer. The American journal of medicine, 60(7), 981-996.

    Article  CAS  PubMed  Google Scholar 

  38. MYCIN: https://web.archive.org/web/20120212093503/http://raa.ruby-lang.org/project/mycin/, last accessed 2020/8/28

  39. Kulikowski, C. A., & Weiss, S. M. (1982). Representation of expert knowledge for consultation: the CASNET and EXPERT projects. Artificial Intelligence in medicine, 51, 21-55.

    Google Scholar 

  40. Kumar, A., Zarychanski, R., Pinto, R., Cook, D. J., Marshall, J., Lacroix, J., ... & Turgeon, A. F. (2009). Critically ill patients with 2009 influenza A (H1N1) infection in Canada. Jama, 302(17), 1872-1879.

    Google Scholar 

  41. Lewis, M. D., Pavlin, J. A., Mansfield, J. L., O’Brien, S., Boomsma, L. G., Elbert, Y., & Kelley, P. W. (2002). Disease outbreak detection system using syndromic data in the greater Washington DC area. American journal of preventive medicine, 23(3), 180-186.

    Article  PubMed  Google Scholar 

  42. Guthmann, J. P., Klovstad, H., Boccia, D., Hamid, N., Pinoges, L., Nizou, J. Y., ... & Ciglenecki, I. (2006). A large outbreak of hepatitis E among a displaced population in Darfur, Sudan, 2004: the role of water treatment methods. Clinical infectious diseases, 42(12), 1685-1691.

    Google Scholar 

  43. Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Scientific reports, 6(1), 1-10.

    Article  CAS  Google Scholar 

  44. Lakhani, P., & Sundaram, B. (2017). Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology, 284(2), 574-582.

    Article  PubMed  Google Scholar 

  45. Wang, N., Cui, L., Huang, X., Xiang, Y., & Xiao, J. (2018). EasiCSDeep: A deep learning model for Cervical Spondylosis Identification using surface electromyography signal. arXiv preprint arXiv:1812.04912.

    Google Scholar 

  46. Tomar, D., & Agarwal, S. (2013). A survey on Data Mining approaches for Healthcare. International Journal of Bio-Science and Bio-Technology, 5(5), 241-266.

    Article  Google Scholar 

  47. Ding, S., Zhu, H., Jia, W., & Su, C. (2012). A survey on feature extraction for pattern recognition. Artificial Intelligence Review, 37(3), 169-180.

    Article  Google Scholar 

  48. Reed, R., & MarksII, R. J. (1999). Neural smithing: supervised learning in feedforward artificial neural networks. Mit Press.

    Book  Google Scholar 

  49. K. Patel, “MNIST Handwritten Digits Classification using a Convolutional Neural Network,” 2020. [Online]. Available: https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-convolutional-neural-network-cnn-af5fafbc35e9.

  50. Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003, August). Best practices for convolutional neural networks applied to visual document analysis. In Icdar (Vol. 3, No. 2003).

    Google Scholar 

  51. Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

    Google Scholar 

  52. Pham, T., Tran, T., Phung, D., & Venkatesh, S. (2017). Predicting healthcare trajectories from medical records: A deep learning approach. Journal of biomedical informatics, 69, 218-229.

    Article  PubMed  Google Scholar 

  53. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104-3112).

    Google Scholar 

  54. Chen, K., Zhou, Y., & Dai, F. (2015, October). A LSTM-based method for stock returns prediction: A case study of China stock market. In 2015 IEEE international conference on big data (big data) (pp. 2823-2824). IEEE.

    Google Scholar 

  55. Choi, E., Schuetz, A., Stewart, W. F., & Sun, J. (2017). Using recurrent neural network models for early detection of heart failure onset. Journal of the American Medical Informatics Association, 24(2), 361-370.

    Article  PubMed  Google Scholar 

  56. Wang, Y., Neves, L., & Metze, F. (2016, March). Audio-based multimedia event detection using deep recurrent neural networks. In 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2742-2746). IEEE..

    Google Scholar 

  57. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

    Google Scholar 

  58. Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE transactions on Signal Processing, 45(11), 2673-2681.

    Article  Google Scholar 

  59. Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative neural networks. AIChE journal, 37(2), 233-243.

    Article  CAS  Google Scholar 

  60. Belciug, S., & Gorunescu, F. (2014). Error-correction learning for artificial neural networks using the Bayesian paradigm. Application to automated medical diagnosis. Journal of Biomedical Informatics, 52, 329-337.

    Article  PubMed  Google Scholar 

  61. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

    Google Scholar 

  62. Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In Advances in neural information processing systems (pp. 524-532).

    Google Scholar 

  63. Russell, S. J., & Norvig, P. (2010). Artificial Intelligence-A Modern Approach, Third International Edition.

    Google Scholar 

  64. Goodfellow, I., Bengio, Y., & Courville, A. (2016). 6.5 Back-Propagation and Other Differentiation Algorithms. Deep Learning, 200-220.

    Google Scholar 

  65. Zhu, X. J. (2005). Semi-supervised learning literature survey. University of Wisconsin-Madison Department of Computer Sciences.

    Google Scholar 

  66. Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., & Ré, C. (2016). Data programming: Creating large training sets, quickly. In Advances in neural information processing systems (pp. 3567-3575).

    Google Scholar 

  67. Rosenthal, S., Farra, N., & Nakov, P. (2017, August). SemEval-2017 task 4: Sentiment analysis in Twitter. In Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017) (pp. 502-518).

    Google Scholar 

  68. Hu, Z., Li, X., Tu, C., Liu, Z., & Sun, M. (2018, August). Few-shot charge prediction with discriminative legal attributes. In Proceedings of the 27th International Conference on Computational Linguistics (pp. 487-498).

    Google Scholar 

  69. Zhong, H., Guo, Z., Tu, C., Xiao, C., Liu, Z., & Sun, M. (2018). Legal judgment prediction via topological learning. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 3540-3549).

    Google Scholar 

  70. Luo, B., Feng, Y., Xu, J., Zhang, X., & Zhao, D. (2017). Learning to predict charges for criminal cases with legal basis. arXiv preprint arXiv:1707.09168.

    Google Scholar 

  71. He, H., Ganjam, K., Jain, N., Lundin, J., White, R., & Lin, J. (2017, September). An insight extraction system on biomedical literature with deep neural networks. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 2691-2701).

    Google Scholar 

  72. Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., ... & Bouras, A. (2014). A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE transactions on emerging topics in computing, 2(3), 267-279.

    Google Scholar 

  73. Choi, E., Bahadori, M. T., Searles, E., Coffey, C., Thompson, M., Bost, J., ... & Sun, J. (2016, August). Multi-layer representation learning for medical concepts. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1495-1504).

    Google Scholar 

  74. Pham, T., Tran, T., Phung, D., & Venkatesh, S. (2016, April). Deepcare: A deep dynamic memory model for predictive medicine. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 30-41). Springer, Cham.

    Google Scholar 

  75. Wickramasinghe, N. (2017). Deepr: a convolutional net for medical records. IEEE J Biomed Health Inform.

    Google Scholar 

  76. Lv, X., Guan, Y., Yang, J., & Wu, J. (2016). Clinical relation extraction with deep learning. International Journal of Hybrid Information Technology, 9(7), 237-248.

    Article  Google Scholar 

  77. Mallya, S., Overhage, M., Srivastava, N., Arai, T., & Erdman, C. (2019). Effectiveness of lstms in predicting congestive heart failure onset. arXiv preprint arXiv:1902.02443.

    Google Scholar 

  78. Nie, L., Wang, M., Zhang, L., Yan, S., Zhang, B., & Chua, T. S. (2015). Disease inference from health-related questions via sparse deep learning. IEEE Transactions on knowledge and Data Engineering, 27(8), 2107-2119.

    Article  Google Scholar 

  79. Nemati, S., Ghassemi, M. M., & Clifford, G. D. (2016, August). Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2978-2981). IEEE.

    Google Scholar 

  80. Choi, E., Bahadori, M. T., Sun, J., Kulas, J., Schuetz, A., & Stewart, W. (2016). Retain: An interpretable predictive model for healthcare using reverse time attention mechanism. In Advances in Neural Information Processing Systems (pp. 3504-3512).

    Google Scholar 

  81. Ong, B. T., Sugiura, K., & Zettsu, K. (2016). Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM 2.5. Neural Computing and Applications, 27(6), 1553-1566.

    Article  PubMed  Google Scholar 

  82. Che, Z., Purushotham, S., Khemani, R., & Liu, Y. (2015). Distilling knowledge from deep networks with applications to healthcare domain. arXiv preprint arXiv:1512.03542.

    Google Scholar 

  83. Jagannatha, A. N., & Yu, H. (2016, June). Bidirectional RNN for medical event detection in electronic health records. In Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting (Vol. 2016, p. 473). NIH Public Access.

    Google Scholar 

  84. Bhatt, U., Davis, B., & Moura, J. M. (2019). Diagnostic Model Explanations: A Medical Narrative. In AAAI Spring Symposium: Interpretable AI for Well-being.

    Google Scholar 

  85. Kinjo, Y., Sakuma, Y., Kobayashi, T., Sugimoto, C., & Kohno, R. (2019, May). Patient Stress Estimation for Using Deep Learning with RRI Data Sensed by WBAN. In 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT) (pp. 1-4). IEEE.

    Google Scholar 

  86. Hu, Y., Chen, F., Cai, Y., & Yuan, Y. A Random Under-sampled Deep Architecture with Medical Event Embedding: Highly Imbalanced Rare Disease Classification with EHR Data. Network, 20(21), 22.

    Google Scholar 

  87. Zhao, L., Chen, J., Chen, F., Wang, W., Lu, C. T., & Ramakrishnan, N. (2015, November). Simnest: Social media nested epidemic simulation via online semi-supervised deep learning. In 2015 IEEE International Conference on Data Mining (pp. 639-648). IEEE.

    Google Scholar 

  88. Banerjee, I., Li, K., Seneviratne, M., Ferrari, M., Seto, T., Brooks, J. D., ... & Hernandez-Boussard, T. (2019). Weakly supervised natural language processing for assessing patient-centered outcome following prostate cancer treatment. JAMIA open, 2(1), 150-159.

    Google Scholar 

  89. Beaulieu-Jones, B. K., Orzechowski, P., & Moore, J. H. (2018, January). Mapping patient trajectories using longitudinal extraction and deep learning in the MIMIC-III Critical Care Database. In PSB (pp. 123-132).

    Google Scholar 

  90. World Health Organization. (2000). World Health Organization Collaborating Centre for Drug Statistics Methodology: Guidelines for ATC Classification and DDD Assignment. Oslo, Norway: WHO.

    Google Scholar 

  91. Fu, R., Zhang, Z., & Li, L. (2016, November). Using LSTM and GRU neural network methods for traffic flow prediction. In 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC) (pp. 324-328). IEEE.

    Google Scholar 

  92. Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern recognition, 30(7), 1145-1159.

    Article  Google Scholar 

  93. Google, “Data preprocessing for machine learning.” [Online]. Available: https://cloud.google.com/solutions/machinelearning/data-preprocessing-for-ml-with-tf-transform-pt1. [Accessed: 22-Feb-2020]

  94. Brownlee, J. (2017). Deep Learning for Natural Language Processing: Develop Deep Learning Models for your Natural Language Problems. Machine Learning Mastery.

    Google Scholar 

  95. Manning, C., & Schutze, H. (1999). Foundations of statistical natural language processing. MIT press.

    Google Scholar 

  96. Wang, Y., Wang, L., Rastegar-Mojarad, M., Moon, S., Shen, F., Afzal, N., ... & Liu, H. (2018). Clinical information extraction applications: a literature review. Journal of biomedical informatics, 77, 34-49.

    Google Scholar 

  97. ATC codes, “World Health Organization Collaborating Centre for Drug Statistics Methodology.” [Online]. Available: https://www.whocc.no/atc_ddd_index/ .

  98. Sethy, A., & Ramabhadran, B. (2008). Bag-of-word normalized n-gram models. In Ninth Annual Conference of the International Speech Communication Association.

    Book  Google Scholar 

  99. Di Nunzio, G. M., & Vezzani, F. (2018). A Linguistic Failure Analysis of Classification of Medical Publications: A Study on Stemming vs Lemmatization. In CLiC-it.

    Google Scholar 

  100. Wang, Y., Wang, L., Rastegar-Mojarad, M., Moon, S., Shen, F., Afzal, N., ... & Liu, H. (2018). Clinical information extraction applications: a literature review. Journal of biomedical informatics, 77, 34-49.

    Google Scholar 

  101. Savova, G. K., Masanz, J. J., Ogren, P. V., Zheng, J., Sohn, S., Kipper-Schuler, K. C., & Chute, C. G. (2010). Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. Journal of the American Medical Informatics Association, 17(5), 507-513.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Aronson, A. R., & Lang, F. M. (2010). An overview of MetaMap: historical perspective and recent advances. Journal of the American Medical Informatics Association, 17(3), 229-236.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ferrucci, D., & Lally, A. (2004). UIMA: an architectural approach to unstructured information processing in the corporate research environment. Natural Language Engineering, 1-26.

    Google Scholar 

  104. Baldridge, J. (2005). The opennlp project. URL: http://opennlp.apache.org/index.html,(accessed 2 February 2012), 1.

  105. Pennington, J., Socher, R. and Manning, C.D., (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).

    Google Scholar 

  106. Bodenreider, O. (2004). The unified medical language system (UMLS): integrating biomedical terminology. Nucleic acids research, 32(suppl_1), D267-D270.

    Google Scholar 

  107. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).

    Google Scholar 

  108. Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks, 18(5-6), 602-610.

    Article  PubMed  Google Scholar 

  109. Lev, G., Klein, B., & Wolf, L. (2015, June). In defense of word embedding for generic text representation. In International Conference on Applications of Natural Language to Information Systems (pp. 35-50). Springer, Cham.

    Google Scholar 

  110. Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.

    Article  Google Scholar 

  111. Dernoncourt, F., Lee, J. Y., Uzuner, O., & Szolovits, P. (2017). De-identification of patient notes with recurrent neural networks. Journal of the American Medical Informatics Association, 24(3), 596-606.

    Article  PubMed  Google Scholar 

  112. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

    Google Scholar 

  113. Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., & Ré, C. (2016). Data programming: Creating large training sets, quickly. In Advances in neural information processing systems (pp. 3567-3575).

    Google Scholar 

  114. Wang, Y., Sohn, S., Liu, S., Shen, F., Wang, L., Atkinson, E. J., ... & Liu, H. (2019). A clinical text classification paradigm using weak supervision and deep representation. BMC medical informatics and decision making, 19(1), 1.

    Google Scholar 

  115. Fries, J., Wu, S., Ratner, A., & Ré, C. (2017). Swellshark: A generative model for biomedical named entity recognition without labeled data. arXiv preprint arXiv:1704.06360.

    Google Scholar 

  116. Hammar, K., Jaradat, S., Dokoohaki, N., & Matskin, M. (2018, December). Deep text mining of instagram data without strong supervision. In 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI) (pp. 158-165). IEEE.

    Google Scholar 

  117. Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., & Ré, C. (2017, November). Snorkel: Rapid training data creation with weak supervision. In Proceedings of the VLDB Endowment. International Conference on Very Large Data Bases (Vol. 11, No. 3, p. 269). NIH Public Access.

    Google Scholar 

  118. Bahdanau, D., Cho, K. and Bengio, Y., (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

    Google Scholar 

  119. Leaman, R., & Lu, Z. (2016). TaggerOne: joint named entity recognition and normalization with semi-Markov Models. Bioinformatics, 32(18), 2839-2846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016, June). Hierarchical attention networks for document classification. In Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies (pp. 1480-1489).

    Google Scholar 

  121. Gao, S., Young, M. T., Qiu, J. X., Yoon, H. J., Christian, J. B., Fearn, P. A., ... & Ramanthan, A. (2018). Hierarchical attention networks for information extraction from cancer pathology reports. Journal of the American Medical Informatics Association, 25(3), 321-330.

    Google Scholar 

  122. Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., & Eisenstein, J. (2018). Explainable prediction of medical codes from clinical text. arXiv preprint arXiv:1802.05695.

    Google Scholar 

  123. Baumel, T., Nassour-Kassis, J., Cohen, R., Elhadad, M., & Elhadad, N. (2017). Multi-label classification of patient notes a case study on ICD code assignment. arXiv preprint arXiv:1709.09587.

    Google Scholar 

  124. Honnibal, M., & Montani, I. (2017). spacy 2: Natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing. To appear, 7(1).

    Google Scholar 

  125. Zhang, J., Kowsari, K., Harrison, J. H., Lobo, J. M., & Barnes, L. E. (2018). Patient2vec: A personalized interpretable deep representation of the longitudinal electronic health record. IEEE Access, 6, 65333-65346.

    Article  Google Scholar 

  126. Sousa, R. T., Pereira, L. A., Galvao Filho, A. R., & Soares, A. D. S. (2018). MedAttention: A Self-Attentive RNN to Predict Diabetes Complications with Financial Data.

    Google Scholar 

  127. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

    Google Scholar 

  128. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

    Google Scholar 

  129. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2018). Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461..

    Google Scholar 

  130. Beltagy, I., Cohan, A., & Lo, K. (2019). Scibert: Pretrained contextualized embeddings for scientific text. arXiv preprint arXiv:1903.10676.

    Google Scholar 

  131. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234-1240..

    Article  CAS  PubMed  Google Scholar 

  132. Huang, K., Altosaar, J., & Ranganath, R. (2019). Clinicalbert: Modeling clinical notes and predicting hospital readmission. arXiv preprint arXiv:1904.05342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhana Zulkernine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zafari, H. et al. (2021). Using Deep Learning with Canadian Primary Care Data for Disease Diagnosis. In: Elloumi, M. (eds) Deep Learning for Biomedical Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-71676-9_12

Download citation

Publish with us

Policies and ethics