Skip to main content

1-Dimensional Convolution Neural Network Classification Technique for Gene Expression Data

  • Chapter
  • First Online:
Deep Learning for Biomedical Data Analysis

Abstract

In the field of bioinformatics, the development of computational methods has drawn significant interest in predicting clinical outcomes of biological data, which has a large number of features. DNA microarray technology is an approach to monitor the expression levels of sizable genes simultaneously. Microarray gene expression data is more useful for predicting and understanding various diseases such as cancer. Most of the microarray data are believed to be high dimensional, redundant, and noisy. In recent years, deep learning has become a research topic in the field of Machine Learning (ML) that achieves remarkable results in learning high-level latent features within identical samples. This chapter discusses various filter techniques which reduce the high dimensionality of microarray data and different deep learning classification techniques such as 2-Dimensional Convolution Neural Network (2D- CNN) and 1-Dimensional CNN (1D-CNN). The proposed method used the fisher criterion and 1D-CNN techniques for microarray cancer samples prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Image taken from https://www.sciencedirect.com/science/article/pii/S0925231215017634#f0010.

References

  1. Bhatia, D. (2010). Medical informatics: A boon to the healthcare industry. Chronicles of Young Scientists, 1(3), 26.

    Google Scholar 

  2. Roh, S. W., Abell, G. C., Kim, K. H., Nam, Y. D., & Bae, J. W. (2010). Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends in biotechnology, 28(6), 291–299.

    Article  CAS  Google Scholar 

  3. Ghorai, S., Mukherjee, A., Sengupta, S., & Dutta, P. K. (2010, December). Multicategory cancer classification from gene expression data by multiclass NPPC ensemble. In 2010 International Conference on Systems in Medicine and Biology (pp. 41–48). IEEE.

    Google Scholar 

  4. Annavarapu, C. S. R., Dara, S., & Banka, H. (2016). Cancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm. EXCLI journal, 15, 460.

    PubMed  PubMed Central  Google Scholar 

  5. Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression data. Journal of bioinformatics and computational biology, 3(02), 185–205.

    Article  CAS  Google Scholar 

  6. Jafari, P., & Azuaje, F. (2006). An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Medical Informatics and Decision Making, 6(1), 27.

    Article  Google Scholar 

  7. Wang, Z. (2005). Neuro-fuzzy modeling for microarray cancer gene expression data. First year transfer report, University of Oxford.

    Google Scholar 

  8. Yassi, M., & Moattar, M. H. (2014). Robust and stable feature selection by integrating ranking methods and wrapper technique in genetic data classification. Biochemical and biophysical research communications, 446(4), 850–856.

    Article  CAS  Google Scholar 

  9. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., … & Bloomfield, C. D. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. science, 286(5439), 531–537.

    Google Scholar 

  10. Alshamlan, H. M., Badr, G. H., & Alohali, Y. A. (2015). Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification. Computational biology and chemistry, 56, 49–60.

    Article  CAS  Google Scholar 

  11. Skowron, A., & Rauszer, C. (1992). The discernibility matrices and functions in information systems. In Intelligent decision support (pp. 331–362). Springer, Dordrecht.

    Book  Google Scholar 

  12. Hatcher, W. G., & Yu, W. (2018). A survey of deep learning: platforms, applications and emerging research trends. IEEE Access, 6, 24411–24432.

    Article  Google Scholar 

  13. Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295–2329.

    Article  Google Scholar 

  14. Gheisari, M., Wang, G., & Bhuiyan, M. Z. A. (2017, July). A survey on deep learning in big data. In 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC) (Vol. 2, pp. 173–180). IEEE.

    Google Scholar 

  15. Wen, M., Zhang, Z., Niu, S., Sha, H., Yang, R., Yun, Y., & Lu, H. (2017). Deep-learning-based drug?target interaction prediction. Journal of proteome research, 16(4), 1401–1409.

    Article  CAS  Google Scholar 

  16. Wei, L., Ding, Y., Su, R., Tang, J., & Zou, Q. (2018). Prediction of human protein subcellular localization using deep learning. Journal of Parallel and Distributed Computing, 117, 212–217.

    Article  Google Scholar 

  17. Almagro Armenteros, J. J., Snderby, C. K., Snderby, S. K., Nielsen, H., & Winther, O. (2017). DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics, 33(21), 3387–3395.

    Article  Google Scholar 

  18. Zeebaree, D. Q., Haron, H., & Abdulazeez, A. M. (2018, October). Gene Selection and Classification of Microarray Data Using Convolutional Neural Network. In 2018 International Conference on Advanced Science and Engineering (ICOASE) (pp. 145–150). IEEE.

    Google Scholar 

  19. Zeng, T., & Ji, S. (2015, November). Deep convolutional neural networks for multi-instance multi-task learning. In 2015 IEEE International Conference on Data Mining (pp. 579–588). IEEE.

    Google Scholar 

  20. Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis & Machine Intelligence, (8), 1226–1238.

    Article  Google Scholar 

  21. Tourassi, G. D., Frederick, E. D., Markey, M. K., & Floyd Jr, C. E. (2001). Application of the mutual information criterion for feature selection in computer?aided diagnosis. Medical physics, 28(12), 2394–2402.

    Article  CAS  Google Scholar 

  22. Meyer, P. E., & Bontempi, G. (2013). Information?Theoretic Gene Selection In Expression Data. Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Postprocessing of Biological Data, 399–420.

    Google Scholar 

  23. Sharbaf, F. V., Mosafer, S., & Moattar, M. H. (2016). A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization. Genomics, 107(6), 231–238.

    Article  Google Scholar 

  24. Yassi, M., & Moattar, M. H. (2014). Robust and stable feature selection by integrating ranking methods and wrapper technique in genetic data classification. Biochemical and biophysical research communications, 446(4), 850–856.

    Article  CAS  Google Scholar 

  25. Hengpraprohm, S., & Chongstitvatana, P. (2007, October). Selecting Informative Genes from Microarray Data for Cancer Classification with Genetic Programming Classifier Using K-Means Clustering and SNR Ranking. In 2007 Frontiers in the Convergence of Bioscience and Information Technologies (pp. 211–218). IEEE.

    Google Scholar 

  26. Forgey, E. (1965). Cluster analysis of multivariate data: Efficiency vs. interpretability of classification. Biometrics, 21(3), 768–769.

    Google Scholar 

  27. Sahu, B., Dehuri, S., & Jagadev, A. K. (2017). Feature selection model based on clustering and ranking in pipeline for microarray data. Informatics in Medicine Unlocked, 9, 107–122.

    Article  Google Scholar 

  28. Cuperlovic-Culf, M., Belacel, N., & Ouellette, R. J. (2005). Determination of tumour marker genes from gene expression data. Drug discovery today, 10(6), 429–437.

    Article  CAS  Google Scholar 

  29. Liao, Q., Jiang, L., Wang, X., Zhang, C., & Ding, Y. (2017, December). Cancer classification with multi-task deep learning. In 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC) (pp. 76–81). IEEE.

    Google Scholar 

  30. Li, C., Zhang, S., Zhang, H., Pang, L., Lam, K., Hui, C., & Zhang, S. (2012). Using the K-nearest neighbor algorithm for the classification of lymph node metastasis in gastric cancer. Computational and mathematical methods in medicine, 2012.

    Google Scholar 

  31. Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10), 906–914.

    Article  CAS  Google Scholar 

  32. Wang, Z., Wang, Y., Xuan, J., Dong, Y., Bakay, M., Feng, Y., … & Hoffman, E. P. (2006). Optimized multilayer perceptrons for molecular classification and diagnosis using genomic data. Bioinformatics, 22(6), 755–761.

    Google Scholar 

  33. Asyali, M. H., Colak, D., Demirkaya, O., & Inan, M. S. (2006). Gene expression profile classification: a review. Current Bioinformatics, 1(1), 55–73.

    Article  CAS  Google Scholar 

  34. Kumar, C. A., Sooraj, M. P., & Ramakrishnan, S. (2017). A comparative performance evaluation of supervised feature selection algorithms on microarray datasets. Procedia computer science, 115, 209–217.

    Article  Google Scholar 

  35. Kar, S., Sharma, K. D., & Maitra, M. (2015). Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique. Expert Systems with Applications, 42(1), 612–627.

    Article  Google Scholar 

  36. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504–507.

    Google Scholar 

  37. Bianchini, M., & Scarselli, F. (2014). On the complexity of neural network classifiers: A comparison between shallow and deep architectures. IEEE transactions on neural networks and learning systems, 25(8), 1553–1565.

    Article  Google Scholar 

  38. Wang, H., Meghawat, A., Morency, L. P., & Xing, E. P. (2017, July). Select-additive learning: Improving generalization in multimodal sentiment analysis. In 2017 IEEE International Conference on Multimedia and Expo (ICME) (pp. 949–954). IEEE.

    Google Scholar 

  39. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48.

    Article  Google Scholar 

  40. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2019). 1D Convolutional Neural Networks and Applications: A Survey. arXiv preprint arXiv:1905.03554.

    Google Scholar 

  41. Zeebaree, D. Q., Haron, H., & Abdulazeez, A. M. (2018, October). Gene Selection and Classification of Microarray Data Using Convolutional Neural Network. In 2018 International Conference on Advanced Science and Engineering (ICOASE) (pp. 145–150). IEEE.

    Google Scholar 

  42. Kiranyaz, S., Ince, T., & Gabbouj, M. (2015). Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Transactions on Biomedical Engineering, 63(3), 664–675.

    Article  Google Scholar 

  43. Kiranyaz, S., Gastli, A., Ben-Brahim, L., Alemadi, N., & Gabbouj, M. (2018). Real-time fault detection and identification for MMC using 1D convolutional neural networks. IEEE Transactions on Industrial Electronics.

    Google Scholar 

  44. Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., … & Lander, E. S. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer cell, 1(2), 203–209.

    Google Scholar 

  45. Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., … & Powell, J. I. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769), 503.

    Google Scholar 

  46. Armstrong, S. A., Staunton, J. E., Silverman, L. B., Pieters, R., den Boer, M. L., Minden, M. D., … & Korsmeyer, S. J. (2002). MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature genetics, 30(1), 41–47.

    Google Scholar 

  47. Pati, S. K., Das, A. K., & Ghosh, A. (2013, December). Gene selection using multi-objective genetic algorithm integrating cellular automata and rough set theory. In International Conference on Swarm, Evolutionary, and Memetic Computing (pp. 144–155). Springer, Cham.

    Google Scholar 

  48. Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta, A., Molter, C., … & Nowe, A. (2012). A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 9(4), 1106–1119.

    Google Scholar 

  49. Hira, Z. M., & Gillies, D. F. (2015). A review of feature selection and feature extraction methods applied on microarray data. Advances in bioinformatics, 2015.

    Google Scholar 

  50. Kotu, V., & Deshpande, B. (2014). Predictive analytics and data mining: concepts and practice with rapidminer. Morgan Kaufmann.

    Google Scholar 

  51. Saha, S. (2018). A comprehensive guide to convolutional neural networks? the ELI5 way.

    Google Scholar 

  52. Hopfield, J. J. (1988). Artificial neural networks. IEEE Circuits and Devices Magazine, 4(5), 3–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Sekhara Rao Annavarapu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parisapogu, S.A.B., Annavarapu, C.S.R., Elloumi, M. (2021). 1-Dimensional Convolution Neural Network Classification Technique for Gene Expression Data. In: Elloumi, M. (eds) Deep Learning for Biomedical Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-71676-9_1

Download citation

Publish with us

Policies and ethics