Skip to main content

Multiobjective Approach for Solving Engineering Robust Design Problems

  • 217 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 961)

Abstract

An approach for Engineering Robust Design Problems based on multi-objective optimization in the solution phase is presented in this paper. The task for optimizing conflicting parameters arises very often when solving design problems. Therefore including new approaches resolving these cases is a live question. One of the advantages of multiobjective approach is that it allows simultaneously research of several conflicting parameters/objectives. The efficiency of the proposed approach is demonstrated by solving the real task of conceptual design of a bulk carrier. The goal is to find the set of main particulars of the ship that minimize together the Required Freight Rate (RFR) and variance due to uncontrollable parameters. The design variables are the main dimensions of the ship – length, breadth, depth, draught and block coefficient. The uncontrollable parameters are the price of a ton hull structures and fuel. The objective functions are obtained by computer experiments based on Response Surface Methodology.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-71616-5_19
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-71616-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  • Augusto, O.B., Bennis, F., Caro, S.: A new method for decision making in multi-objective optimization problems. Pesquisa Operacional 32(2), 331–369 (2012). ISSN 1678–5142. http://www.scielo.br/pdf/pope/v32n2/aop1112.pdf

  • Baba, I., Midi, H., Rana, S., Ibragimov, G.: An alternative approach of dual response surface optimization based on penalty function method. Hindawi publishing corporation. Math. Prob. Eng. 2015, 6 (2015). http://dx.doi.org/10.1155/2015/450131

  • Canessa, E., Chaigneau, S.: Response surface methodology for estimating missing values in a Pareto genetic algorithm used in parameter design. Ingeniería e Investigación, 37(2), 89–98 (2017)

    Google Scholar 

  • Cui, Y, Geng, Z., Zhu, Q., Han, Y.: Review: multi-objective optimization methods and application in energy saving. Energy 125, 681–704 (2017)

    Google Scholar 

  • Diez, M., Peri, D.: Robust optimization for ship conceptual design. Ocean Eng. 37, 966–977 (2010)

    CrossRef  Google Scholar 

  • Ding, R., Lin, D.K.J., Wei, D.: Dual-response surface optimization: a weighted MSE approach. Q. Eng. 16(3), 377–385 (2004)

    CrossRef  Google Scholar 

  • Damyanliev, T.R., Georgiev, P., Garbatov, Y.: Conceptual ship design framework for designing new commercial ships. In: Soares, C., Garbatov, Y. (eds.) Progress in the Analysis and Design of Marine Structures, pp. 183–192, Taylor and Francis, Milton (2017)

    Google Scholar 

  • Georgiev, P.G.: Implementation of metamodels in ship design. In: Soares, C., Kolev, P. (eds.) Maritime Industry, Ocean Engineering and Coastal Resources, pp. 419–428. Taylor and Francis Group, London (2008)

    Google Scholar 

  • Hannapel, S.E., Vlahopoulos, N.: Robust and reliable multidiscipline ship design. In: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, 13–15 September 2010, Fort Worth, Texas, AIAA 2010, p. 9394 (2010). https://doi.org/10.2514/6.2010-9394

  • Kemmler, S., Eifler, T., Bertsche, B., Howard, T. J.: Robust reliability or reliable robustness? -integrated consideration of robustness and reliability aspects. In: Proceedings of the 27 Fachtagung Technische Zuverlässigkeit, pp. 295–306 (2015)

    Google Scholar 

  • Kaliszewski, I., Miroforidis, J., Podkopaev, D.: Multiple Criteria Decision Making by Multiobjective Optimization, Springer (2016). 10.1007/978-3-319-32756-3

    Google Scholar 

  • Khalifa, H.A.: An interactive approach for solving multi-objective nonlinear programming and its application to cooperative continuous static games. J. Appl. Res. Ind. Eng. 5(4), 296–305 (2018). https://doi.org/10.22105/jarie.2018.151038.1058

    CrossRef  Google Scholar 

  • Kim, K.-J., Lin, D.K.J.: Dual response surface optimization: a fuzzy modeling approach. J. Qual. Technol. 30(1), 1–10 (1998)

    Google Scholar 

  • Köksoy, O, Hocaoglu, G.: Multi-objective optimization solutions to the Taguchi’s problem. G.U. J. Sci. 18(4), 613–626 (2005)

    Google Scholar 

  • Lin, D.K.J., Tu, W.: Dual response surface optimization. J. Qual. Technol. 27(1), 34–39 (1995)

    CrossRef  MathSciNet  Google Scholar 

  • Miettinen, K.: Some methods for nonlinear multi-objective optimization. In: Zitzler, E., Thiele, L., Deb, K., Coello, C.A., Corne, D. (eds) Evolutionary Multi-Criterion Optimization. EMO 2001. Lecture Notes in Computer Science, vol. 1993, pp. 1–20 (2001). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44719-9_1

  • Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Mult. Optim. 26(6), 369–395 (2004). https://doi.org/10.1007/s00158-003-0368-6

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive nonlinear multiobjective optimization methods. In: Greco, S., Ehrgott, M., Figueira, J.R. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, vol. 233, pp. 931–980. International Series in Operations Research and Management Science, Springer Science + Business Media (2016). https://doi.org/10.1007/978-1-4939-3094-4_22

  • Myers, R.H., Montgomery, D.C.: Response surface methodology. Process and product optimization using designed experiments. Second Edition, John Wiley and Sons Inc. (2002)

    Google Scholar 

  • Myers, R.H., Carter, W.H.: Response surface methods for dual response systems. Technometrics 15(2), 301–307 (1973)

    Google Scholar 

  • Nakayama, H.: Aspiration level approach to interactive multi-objective programming and its applications. In: Pardalos, P.M., Siskos, Y., Zopounidis, C. (eds) Advances in Multicriteria Analysis. Nonconvex Optimization and Its Applications, vol. 5, pp. 147–174. Springer, Boston (1995)

    Google Scholar 

  • Nakayama, H., Savaragi, Y.: Satisficing trade-off method for multiobjective programming and its applications. In: Gertler, J. (ed.) Proceedings of the 9th IFAC World Congress: A Bridge Between Control Science and Technology. IFAC Proceedings, vol. 17, no. 2, pp. 1345–1350. Elsevier (1984). https://doi.org/10.1016/S1474-6670(17)61162-5

  • Park, G.-J., Lee, T.-H., Lee, K.H., Hwang, K.-H.: Robust design: an overview. AIAA J. 44(1), 181–191 (2006)

    CrossRef  Google Scholar 

  • Parsons, M.G., Scott, R.L.: Formulation design optimization problems for solution with scalar numerical optimization methods. J. Ship Res. 48(1), 61–76 (2004)

    CrossRef  Google Scholar 

  • Ramanathan, R., Ravindran, A.R., Mathirajan, M.: ‘Multi-criteria decision making: an overview and a comparative discussion. In: Ramanathan, R., Mathirajan, M., Ravindran, A.R. (eds.) Big Data Analytics Using Multiple Criteria Decision Making Models, pp. 21–66. CRC Press, Taylor and Francis, 1 edition, Florida, USA (2017). https://doi.org/10.1201/9781315152653-3

  • Ray, T., Smith, W.: A surrogate assisted parallel multiobjective evolutionary algorithm for robust engineering design. Eng. Optim. 38(8), 997–1011 (2006)

    CrossRef  Google Scholar 

  • Samanlioglu, F., Ferrell, W.G., Kurz, M.E.: An interactive memetic algorithm for production and manufacturing problems modelled as a multi-objective travelling salesman problem. Int. J. Prod. Res. 50(20), 5671–5682 (2012). https://doi.org/10.1080/00207543.2011.593578

  • Sen, P., Yang, J.-B.: Multiple Criteria Decision Support in Engineering Design. Springer, London (1998). ISBN-13: 978–1-4471-3022-2

    Google Scholar 

  • Vining, G.G., Myers, R.H.: Combining taguchi and response surface philosophies: a dual response approach. J. Qual. Technol. 22(1), 38–45 (1900)

    Google Scholar 

  • Yanikoglu, I., den Hertog, D., Kleijnen, J.P.C.: Robust dual-response optimization. IIE Trans. 48(3), 298–312 (2016)

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Grant No BG05M2OP001-1.001-0003, financed by the Science and Education for Smart Growth Operational Program and co-financed by the European Union through the European structural and Investment funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leoneed Kirilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kirilov, L., Georgiev, P. (2021). Multiobjective Approach for Solving Engineering Robust Design Problems. In: Georgiev, I., Kostadinov, H., Lilkova, E. (eds) Advanced Computing in Industrial Mathematics. BGSIAM 2018. Studies in Computational Intelligence, vol 961. Springer, Cham. https://doi.org/10.1007/978-3-030-71616-5_19

Download citation