Skip to main content

RNA m6A Modification: The Mediator Between Cellular Stresses and Biological Effects

  • Chapter
  • First Online:
Epitranscriptomics

Part of the book series: RNA Technologies ((RNATECHN,volume 12))

Abstract

Cells are constantly exposed to ubiquitous threats from the external and intracellular sources, including ultraviolet (UV), temperature switch, pathogen infection, starvation, etc. These adverse conditions would disturb cellular homeostasis by dysregulation of RNA metabolisms, such as transcription, splicing, translation, and so forth. Similar to DNA and proteins, RNA is subject to various (over 160) covalent modifications, among which m6A is the most abundant internal modification on messenger RNA (mRNA) and plays crucial roles in regulation of RNA-related bioprocesses. Recently, increasing evidence indicated that RNA modifications could be the “sensor” to recognize and respond to external and intracellular stresses. For example, we found that UV exposure rapidly and transiently induced the m6A on RNA at DNA damage sites to recruit Pol κ for efficient DNA repair. Several studies also showed RNA modifications responding to other stresses such as starvation, heat shock, and pathogen infection. For instance, heat shock could directly or indirectly affect distribution and abundance of m6A modification, regulated by m6A modifiers, which in turn influenced the expression of specific genes (HSPs, MYC, circE7) and the downstream bioprocesses to respond to the temperature stress. In this section, we summarize the involvement of m6A RNA modification in regulation of distinct stress responses and discuss the recent advances in the underlying molecular mechanisms involved in these regulations to get a comprehensive picture of the functions of RNA m6A modifications in response to cellular stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abakir A, Giles TC, Cristini A et al (2020) N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat Genet 52:48–55

    CAS  PubMed  Google Scholar 

  • Alriquet M, Calloni G, Martínez-Limón A et al (2020) The protective role of m1A during stress-induced granulation. J Mol Cell Biol 12(11):870–880. https://doi.org/10.1093/jmcb/mjaa023

    Article  PubMed Central  Google Scholar 

  • Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    Article  CAS  PubMed  Google Scholar 

  • Anders M, Chelysheva I, Goebel I et al (2018) Dynamic m 6 a methylation facilitates mRNA triaging to stress granules. Life Sci Alliance 1:e201800113

    Article  PubMed  PubMed Central  Google Scholar 

  • Baquero-Perez B, Antanaviciute A, Yonchev ID et al (2019) The Tudor SND1 protein is an m6A RNA reader essential for replication of Kaposi’s sarcoma-associated herpesvirus. elife 8:e47261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batie M, Frost J, Frost M et al (2019) Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science 363:1222–1226

    Article  CAS  PubMed  Google Scholar 

  • Bersten DC, Sullivan AE, Peet DJ et al (2013) bHLH-PAS proteins in cancer. Nat Rev Cancer 13:827–841

    Article  CAS  PubMed  Google Scholar 

  • Buono R, Longo VD (2018) Starvation, stress resistance, and cancer. Trends Endocrinol Metab 29:271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadet J, Douki T (2018) Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci 17:1816–1841

    Article  CAS  PubMed  Google Scholar 

  • Chantarachot T, Bailey-Serres J (2018) Polysomes, stress granules, and processing bodies: a dynamic triumvirate controlling cytoplasmic mRNA fate and function. Plant Physiol 176:254–269

    Article  CAS  PubMed  Google Scholar 

  • Chao Y, Shang J, Ji W (2020) ALKBH5-m6A-FOXM1 signaling axis promotes proliferation and invasion of lung adenocarcinoma cells under intermittent hypoxia. Biochem Biophys Res Commun 521:499–506

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhao T, Sun D et al (2019a) Changes of RNA N6-methyladenosine in the hormesis effect induced by arsenite on human keratinocyte cells. Toxicol In Vitro 56:84–92

    Article  CAS  PubMed  Google Scholar 

  • Chen X-Y, Zhang J, Zhu J-S (2019b) The role of m6A RNA methylation in human cancer. Mol Cancer 18:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Yang H, Zhu X et al (2020) m5C modification of mRNA serves a DNA damage code to promote homologous recombination. Nat Commun 11:2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtney DG, Kennedy EM, Dumm RE et al (2017) Epitranscriptomic enhancement of influenza a virus gene expression and replication. Cell Host Microbe 22:377–386.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtney DG, Tsai K, Bogerd HP et al (2019) Epitranscriptomic addition of m5C to HIV-1 transcripts regulates viral gene expression. Cell Host Microbe 26:217–227.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Q, Shi H, Ye P et al (2017) m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18:2622–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darnell RB, Ke S, Darnell JE (2018) Pre-mRNA processing includes N6 methylation of adenosine residues that are retained in mRNA exons and the fallacy of “RNA epigenetics”. RNA 24:262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dave A, Craig JE, Skrzypiec K et al (2019) Epha2 genotype influences ultraviolet radiation induced cataract in mice. Exp Eye Res 188:107806

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Su R, Weng H et al (2018) RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Res 28:507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206

    Article  CAS  PubMed  Google Scholar 

  • D’Orazio J, Jarrett S, Amaro-Ortiz A et al (2013) UV radiation and the skin. Int J Mol Sci 14:12222–12248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109:E2183–E2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel M, Eggert C, Kaplick PM et al (2018) The role of m6A/m-RNA methylation in stress response regulation. Neuron 99(2):389–403.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteve-Puig R, Bueno-Costa A, Esteller M (2020) Writers, readers and erasers of RNA modifications in cancer. Cancer Lett 474:127–137

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Hu Y, Hou Z et al (2020) Chronic corticosterone exposure induces liver inflammation and fibrosis in association with m6A-linked post-transcriptional suppression of heat shock proteins in chicken. Cell Stress Chaperones 25:47–56

    Article  CAS  PubMed  Google Scholar 

  • Flügel D, Görlach A, Michiels C et al (2007) Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol 27:3253–3265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fustin J-M, Doi M, Yamaguchi Y et al (2013) RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155:793–806

    Article  CAS  PubMed  Google Scholar 

  • Fry NJ, Law BA, Ilkayeva OR et al (2017) N6-methyladenosine is required for the hypoxic stabilization of specific mRNAs. RNA 23:1444–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry NJ, Law BA, Ilkayeva OR et al (2018) N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression. Oncotarget 9:31231–31243

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Pei G, Li D et al (2019) Multivalent m6A motifs promote phase separation of YTHDF proteins. Cell Res 29:767–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genenncher B, Durdevic Z, Hanna K et al (2018) Mutations in Cytosine-5 tRNA methyltransferases impact Mobile element expression and genome stability at specific DNA repeats. Cell Rep 22:1861–1874

    Article  CAS  PubMed  Google Scholar 

  • Gokhale NS, McIntyre ABR, Mattocks MD et al (2020) Altered m6A modification of specific cellular transcripts affects Flaviviridae infection. Mol Cell 77:542–555.e8

    Article  CAS  PubMed  Google Scholar 

  • Gordon DE, Jang GM, Bouhaddou M et al (2020) A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. bioRxiv Preprint. 2020 Mar 22

    Google Scholar 

  • Green NH, Galvan DL, Badal SS et al (2019) MTHFD2 links RNA methylation to metabolic reprogramming in renal cell carcinoma. Oncogene 38:6211–6225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao H, Hao S, Chen H et al (2019) N6-methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Res 47:362–374

    Article  CAS  PubMed  Google Scholar 

  • Heng J, Tian M, Zhang W et al (2019) Maternal heat stress regulates the early fat deposition partly through modification of m6A RNA methylation in neonatal piglets. Cell Stress Chaperones 24:635–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hesser CR, Karijolich J, Dominissini D et al (2018) N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi’s sarcoma-associated herpesvirus infection. PLoS Pathog 14(4):e1006995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou J, Zhang H, Liu J et al (2019) YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer 18:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang H, Weng H, Sun W et al (2018) Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imam H, Khan M, Gokhale NS et al (2018) N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proc Natl Acad Sci U S A 115:8829–8834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imam H, Kim G-W, Mir SA et al (2020) Interferon-stimulated gene 20 (ISG20) selectively degrades N6-methyladenosine modified hepatitis B virus transcripts. PLoS Pathog 16:e1008338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  CAS  PubMed  Google Scholar 

  • Jabs S, Biton A, Bécavin C et al (2020) Impact of the gut microbiota on the m6A epitranscriptome of mouse cecum and liver. Nat Commun 11:1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia G, Fu Y, Zhao X et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joëls M, Karst H, Sarabdjitsingh RA (2018) The stressed brain of humans and rodents. Acta Physiol (Oxf) 223:e13066

    Article  CAS  Google Scholar 

  • Jurczyszak D, Zhang W, Terry SN et al (2020) HIV protease cleaves the antiviral m6A reader protein YTHDF3 in the viral particle. PLoS Pathog 16:e1008305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy EM, Bogerd HP, Kornepati AVR et al (2016) Posttranscriptional m(6)a editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe 19:675–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim G-W, Imam H, Khan M et al (2020a) N6-Methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling. J Biol Chem 295:13123–13133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Lee J-Y, Yang J-S et al (2020b) The architecture of SARS-CoV-2 transcriptome. Cell 181:914–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knuckles P, Carl SH, Musheev M et al (2017) RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nat Struct Mol Biol 24:561–569

    Article  CAS  PubMed  Google Scholar 

  • Koranda JL, Dore L, Shi H et al (2018) Mettl14 is essential for Epitranscriptomic regulation of striatal function and learning. Neuron 99(2):283–292.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer GF, Baker JC, Ames BN (1988) Near-UV stress in salmonella typhimurium: 4-thiouridine in tRNA, ppGpp, and ApppGpp as components of an adaptive response. J Bacteriol 170:2344–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretschmer J, Rao H, Hackert P et al (2018) The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′-3′ exoribonuclease XRN1. RNA 24:1339–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuai Y, Gong X, Ding L et al (2018) Wilms’ tumor 1-associating protein plays an aggressive role in diffuse large B-cell lymphoma and forms a complex with BCL6 via Hsp90. Cell Commun Signal 16:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhrt D, Wojchowski DM (2015) Emerging EPO and EPO receptor regulators and signal transducers. Blood 125:3536–3541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li M, Zhao X, Wang W et al (2018) Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol 19(1):69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Y, Zhan G, Chang K-J et al (2020) The roles of m6A RNA modifiers in human cancer. J Chin Med Assoc 83:221–226

    Article  CAS  PubMed  Google Scholar 

  • Lichinchi G, Zhao BS, Wu Y et al (2016a) Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 20(5):666–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichinchi G, Gao S, Saletore Y et al (2016b) Dynamics of the human and viral m(6)a RNA methylomes during HIV-1 infection of T cells. Nat Microbiol 1:16011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Zhu Q, Huang J et al (2020a) Hypoxia promotes vascular smooth muscle cell (VSMC) differentiation of adipose-derived stem cell (ADSC) by regulating Mettl3 and paracrine factors. Stem Cells Int 2020:2830565

    PubMed  PubMed Central  Google Scholar 

  • Lin Z, Niu Y, Wan A et al (2020b) RNA m6 a methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO J 39:e103181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang X, Chen K et al (2019a) CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity 50:600–615

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, You Y, Lu Z et al (2019b) N6-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science 365:1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Liu S-Y, Feng Y, Wu J-J et al (2020) m6 a facilitates YTHDF-independent phase separation. J Cell Mol Med 24:2070–2072

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Tirumuru N, St Gelais C et al (2018) N6-Methyladenosine-binding proteins suppress HIV-1 infectivity and viral production. J Biol Chem 293:12992–13005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Ma Y, Li Q et al (2019) The role of N6-methyladenosine RNA methylation in the heat stress response of sheep (Ovis aries). Cell Stress Chaperones 24:333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Zhang Z, Xue M et al (2020) N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol 5:584–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo G-Z, MacQueen A, Zheng G et al (2014) Unique features of the m6A methylome in Arabidopsis thaliana. Nat Commun 5:5630

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhang J, Yang P et al (2015) Acute restraint stress alters sound-evoked neural responses in the rat auditory cortex. Neuroscience 290:608–620

    Article  CAS  PubMed  Google Scholar 

  • Magimaidas A, Madireddi P, Maifrede S et al (2016) Gadd45b deficiency promotes premature senescence and skin aging. Oncotarget 7:26935–26948

    Article  PubMed  PubMed Central  Google Scholar 

  • Maimaitiyiming Y, Zhu H-H, Yang C et al (2020) Biotransformation of arsenic trioxide by AS3MT favors eradication of acute promyelocytic leukemia: revealing the hidden facts. Drug Metab Rev 52:425–437

    Article  CAS  PubMed  Google Scholar 

  • Malbec L, Zhang T, Chen Y-S et al (2019) Dynamic methylome of internal mRNA N7-methylguanosine and its regulatory role in translation. Cell Res 29:927–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Chantar ML, Latasa MU, Varela-Rey M et al (2003) L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine. J Biol Chem 278:19885–19890

    Article  PubMed  Google Scholar 

  • Meyer KD, Saletore Y, Zumbo P et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149:1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer KD, Patil DP, Zhou J et al (2015) 5’ UTR m(6)a promotes cap-independent translation. Cell 163:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao W, Li L, Zhao Y et al (2019) HSP90 inhibitors stimulate DNAJB4 protein expression through a mechanism involving N6-methyladenosine. Nat Commun 10:3613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moriwaki S, Takahashi Y (2008) Photoaging and DNA repair. J Dermatol Sci 50:169–176

    Article  CAS  PubMed  Google Scholar 

  • Nicolas S, Abdellatef S, Haddad MA et al (2019) Hypoxia and EGF stimulation regulate VEGF expression in human glioblastoma Multiforme (GBM) cells by differential regulation of the PI3K/rho-GTPase and MAPK pathways. Cell 8(11):1397

    Article  CAS  Google Scholar 

  • Niu Y, Lin Z, Wan A et al (2019) RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer 18:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliva Trejo JA, Tanida I, Suzuki C et al (2020) Characterization of starvation-induced autophagy in cerebellar Purkinje cells of pHluorin-mKate2-human LC3B transgenic mice. Sci Rep 10:9643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oyarzún-Arrau A, Alonso-Palomares L, Valiente-Echeverría F et al (2020) Crosstalk between RNA metabolism and cellular stress responses during Zika virus replication. Pathogens 9(3):158

    Article  PubMed Central  CAS  Google Scholar 

  • Pan R, Xu YH, Xu L et al (2020) Methylation changes in response to hypoxic stress in wheat regulated by methyltransferases. Russ J Plant Physiol 67:323–333

    Article  CAS  Google Scholar 

  • Panneerdoss S, Eedunuri VK, Yadav P et al (2018) Cross-talk among writers, readers, and erasers of m6A regulates cancer growth and progression. Sci Adv 4:eaar8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardon M-C, Marsden CA (2008) The long-term impact of stress on brain function: from adaptation to mental diseases. Neurosci Biobehav Rev 32:1071–1072

    Article  PubMed  Google Scholar 

  • Patil DP, Chen C-K, Pickering BF et al (2016) M(6)a RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:369–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pendleton KE, Chen B, Liu K et al (2017) The U6 snRNA m 6 a methyltransferase METTL16 regulates SAM Synthetase intron retention. Cell 169(5):824–835.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ping X-L, Sun B-F, Wang L et al (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raffaghello L, Lee C, Safdie FM et al (2008) Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci U S A 105:8215–8220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravanan P, Srikumar IF, Talwar P (2017) Autophagy: the spotlight for cellular stress responses. Life Sci 188:53–67

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  PubMed  Google Scholar 

  • Ries RJ, Zaccara S, Klein P et al (2019) m6A enhances the phase separation potential of mRNA. Nature 571:424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson M, Shah P, Cui Y-H et al (2019) The role of dynamic m 6 a RNA methylation in photobiology. Photochem Photobiol 95:95–104

    Article  CAS  PubMed  Google Scholar 

  • Roundtree IA, He C (2016) Nuclear m(6)a reader YTHDC1 regulates mRNA splicing. Trends Genet 32:320–321

    Article  CAS  PubMed  Google Scholar 

  • Rubio RM, Depledge DP, Bianco C et al (2018) RNA m6 a modification enzymes shape innate responses to DNA by regulating interferon β. Genes Dev 32:1472–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggieri A, Dazert E, Metz P et al (2012) Dynamic oscillation of translation and stress granule formation mark the cellular response to virus infection. Cell Host Microbe 12:71–85

    Article  CAS  PubMed  Google Scholar 

  • Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354

    Article  CAS  PubMed  Google Scholar 

  • Schwartz S, Agarwala SD, Mumbach MR et al (2013) High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155:1409–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz S, Mumbach MR, Jovanovic M et al (2014) Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 8:284–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Wang X, Lu Z et al (2017) YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 27:315–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Zhang X, Weng Y-L et al (2018) m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature 563:249–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Felley-Bosco E, Marti TM et al (2012) Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin. BMC Cancer 12:571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Fan S, Wu M et al (2019) YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun 10:4892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shima H, Matsumoto M, Ishigami Y et al (2017) S-Adenosylmethionine synthesis is regulated by selective N6-adenosine methylation and mRNA degradation involving METTL16 and YTHDC1. Cell Rep 21:3354–3363

    Article  CAS  PubMed  Google Scholar 

  • Snider JW, Datta NR, Vujaskovic Z (2016) Hyperthermia and radiotherapy in bladder cancer. Int J Hyperth 32:398–406

    Article  CAS  Google Scholar 

  • Soares PI, Ferreira IM, Igreja RA et al (2012) Application of hyperthermia for cancer treatment: recent patents review. Recent Pat Anticancer Drug Discov 7(1):64–73

    Article  CAS  PubMed  Google Scholar 

  • Song H, Feng X, Zhang H et al (2019) METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 15:1419–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stöhr N, Lederer M, Reinke C et al (2006) ZBP1 regulates mRNA stability during cellular stress. J Cell Biol 175:527–534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun C, Jora M, Solivio B et al (2018) The effects of ultraviolet radiation on nucleoside modifications in RNA. ACS Chem Biol 13:567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suragani RNVS, Zachariah RS, Velazquez JG et al (2012) Heme-regulated eIF2α kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood 119:5276–5284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svobodová Kovaříková A, Stixová L, Kovařík A et al (2020) N6-adenosine methylation in RNA and a reduced m3G/TMG level in non-coding RNAs appear at microirradiation-induced DNA lesions. Cell 9(2):360

    Article  CAS  Google Scholar 

  • Tan B, Liu H, Zhang S et al (2018) Viral and cellular N6-methyladenosine and N6,2’-O-dimethyladenosine epitranscriptomes in the KSHV life cycle. Nat Microbiol 3:108–120

    Article  CAS  PubMed  Google Scholar 

  • Tanabe A, Tanikawa K, Tsunetomi M et al (2016) RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett 376:34–42

    Article  CAS  PubMed  Google Scholar 

  • Thienpont B, Steinbacher J, Zhao H et al (2016) Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirumuru N, Zhao BS, Lu W et al (2016) N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 gag protein expression. elife 5:e15528

    Article  PubMed  PubMed Central  Google Scholar 

  • Tirumuru N, Wu L (2019) HIV-1 envelope proteins up-regulate N6-methyladenosine levels of cellular RNA independently of viral replication. J Biol Chem 294:3249–3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai K, Courtney DG, Cullen BR (2018) Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLoS Pathog 14:e1006919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vabulas RM, Raychaudhuri S, Hayer-Hartl M et al (2010) Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol 2:a004390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wächter K, Köhn M, Stöhr N et al (2013) Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains. Biol Chem 394:1077–1090

    Article  PubMed  CAS  Google Scholar 

  • Wacker M, Holick MF (2013) Sunlight and vitamin D: a global perspective for health. Dermatoendocrinol 5:51–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Lu Z, Gomez A et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhao BS, Roundtree IA et al (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Feng J, Xue Y et al (2016) Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 534:575–578

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Y, Yue M et al (2018) N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat Neurosci 21(2):195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Ishfaq M, Xu L et al (2019a) METTL3/m6A/miRNA-873-5p attenuated oxidative stress and apoptosis in Colistin-induced kidney injury by modulating Keap1/Nrf2 pathway. Front Pharmacol 10:517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JX, Breaker RR (2008) Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. Biochem Cell Biol 86:157–168

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li Y, Chen W et al (2019b) Transcriptome-wide reprogramming of N6-methyladenosine modification by the mouse microbiome. Cell Res 29:167–170

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wu R, Liu Y et al (2020a) m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy 16:1221–1235

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang L, Diao J et al (2020b) Binding to m6A RNA promotes YTHDF2-mediated phase separation. Protein Cell 11:304–307

    Article  PubMed  Google Scholar 

  • Wu C, Chen W, He J et al (2020) Interplay of m6A and H3K27 trimethylation restrains inflammation during bacterial infection. In: Sci Adv 6:eaba0647

    Google Scholar 

  • Xiang Y, Laurent B, Hsu C-H et al (2017) RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 543:573–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Peng H, Hong C et al (2017) PDGF promotes the Warburg effect in pulmonary arterial smooth muscle cells via activation of the PI3K/AKT/mTOR/HIF-1α signaling pathway. Cell Physiol Biochem 42:1603–1613

    Article  CAS  PubMed  Google Scholar 

  • Xue M, Zhao BS, Zhang Z et al (2019) Viral N6-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus. Nat Commun 10:4595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Fan X, Mao M et al (2017) Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27:626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Perrera V, Saplaoura E et al (2019a) m5C methylation guides systemic transport of messenger RNA over graft junctions in plants. Curr Biol 29:2465–2476.e5

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Wei J, Cui Y-H et al (2019b) m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun 10:2782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao M, Dong Y, Wang Y et al (2020) N6-methyladenosine modifications enhance enterovirus 71 ORF translation through METTL3 cytoplasmic distribution. Biochem Biophys Res Commun 527:297–304

    Article  CAS  PubMed  Google Scholar 

  • Ye F, Chen ER, Nilsen TW (2017) Kaposi’s sarcoma-associated herpesvirus utilizes and manipulates RNA N6-adenosine methylation to promote lytic replication. J Virol 91

    Google Scholar 

  • Yoon K-J, Vissers C, Ming G-L et al (2018) Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. J Cell Biol 217(6):1901–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Li Y, Wang T et al (2018) Modification of N6-methyladenosine RNA methylation on heat shock protein expression. PLoS One 13:e0198604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yue Y, Liu J, Cui X et al (2018) VIRMA mediates preferential m6A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 4:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang C, Samanta D, Lu H et al (2016a) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci U S A 113:E2047–E2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Zhi WI, Lu H et al (2016b) Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget 7:64527–64542

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J (2017) Brothers in arms: emerging roles of RNA epigenetics in DNA damage repair. Cell Biosci 7:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Q, Riddle RC, Yang Q et al (2019) The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proc Natl Acad Sci U S A 116:17980–17989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Chen L, Di P et al (2020a) METTL3 and N6-Methyladenosine promote homologous recombination-mediated repair of DSBs by modulating DNA-RNA hybrid accumulation. Mol Cell 79:425–442

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang F, Wang Z et al (2020b) ALKBH5 promotes the proliferation of renal cell carcinoma by regulating AURKB expression in an m6A-dependent manner. Ann Transl Med 8:646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao BS, Wang X, Beadell AV et al (2017) m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542:475–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Li X, Sun D et al (2019) Oxidative stress: one potential factor for arsenite-induced increase of N6-methyladenosine in human keratinocytes. Environ Toxicol Pharmacol 69:95–103

    Article  CAS  PubMed  Google Scholar 

  • Zhao T-X, Wang J-K, Shen L-J et al (2020) Increased m6A RNA modification is related to the inhibition of the Nrf2-mediated antioxidant response in di-(2-ethylhexyl) phthalate-induced prepubertal testicular injury. Environ Pollut 259:113911

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Dahl JA, Niu Y et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Hou J, Zhou Y et al (2017) The RNA helicase DDX46 inhibits innate immunity by entrapping m6A-demethylated antiviral transcripts in the nucleus. Nat Immunol 18:1094–1103

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Liao D, Zhang M et al (2019) YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett 442:252–261

    Google Scholar 

  • Zhou J, Wan J, Gao X et al (2015) dynamic m(6)a mRNA methylation directs translational control of heat shock response. Nature 526:591–594

    Google Scholar 

  • Zhou J, Wan J, Shu XE et al (2018) N6-Methyladenosine guides mRNA alternative translation during integrated stress response. Mol Cell 69:636–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Zhao Y, Zou L et al (2019) The E3 ligase VHL promotes follicular helper T cell differentiation via glycolytic-epigenetic control. J Exp Med 216:1664–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from the National Natural Science Foundation of China (31972883, 82000155). Meanwhile, we are very grateful to our lab member Mr. Jiebo Lin for optimizing the figures in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hung Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Maimaitiyiming, Y., Su, K., Hsu, CH. (2021). RNA m6A Modification: The Mediator Between Cellular Stresses and Biological Effects. In: Jurga, S., Barciszewski, J. (eds) Epitranscriptomics. RNA Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-71612-7_13

Download citation

Publish with us

Policies and ethics