Skip to main content

HighPerMeshes – A Domain-Specific Language for Numerical Algorithms on Unstructured Grids

  • Conference paper
  • First Online:
Euro-Par 2020: Parallel Processing Workshops (Euro-Par 2020)

Abstract

Solving partial differential equations on unstructured grids is a cornerstone of engineering and scientific computing. Nowadays, heterogeneous parallel platforms with CPUs, GPUs, and FPGAs enable energy-efficient and computationally demanding simulations. We developed the HighPerMeshes C++-embedded Domain-Specific Language (DSL) for bridging the abstraction gap between the mathematical and algorithmic formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different parallel programming and runtime models on the other hand. Thus, the HighPerMeshes DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HighPerMeshes DSL, and demonstrate its usage with three examples, a Poisson and monodomain problem, respectively, solved by the continuous finite element method, and the discontinuous Galerkin method for Maxwell’s equation. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters, is presented. Finally, the achievable performance and scalability are demonstrated for a typical example problem on a multi-core CPU cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/HighPerMeshes/highpermeshes-dsl.

  2. 2.

    https://github.com/HighPerMeshes/highpermeshes-drts-gaspi.

References

  1. Arndt, D., et al.: The deal.II library, version 9.1. J. Numer. Math. 27(4), 203–213 (2019)

    Article  MathSciNet  Google Scholar 

  2. Balay, S., et al.: PETSc (2019). https://www.mcs.anl.gov/petsc

  3. Bastian, P., et al.: A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82(2), 121–138 (2008). https://doi.org/10.1007/s00607-008-0004-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Dauby, P., Desaive, T., Croisier, H., Kolh, P.: Standing waves in the FitzHugh-Nagumo model of cardiac electrical activity. Phys. Rev. E 73(2), 021908 (2006)

    Article  Google Scholar 

  5. Deuflhard, P., Weiser, M.: Adaptive Numerical Solution of PDEs. Walter de Gruyter, Berlin (2012)

    Book  Google Scholar 

  6. DeVito, Z., et al.: Liszt: a domain specific language for building portable mesh-based PDE solvers. In: Proceedings of Conference on High Performance Computing Networking, Storage and Analysis (SC 2011), p. paper 9. ACM (2011)

    Google Scholar 

  7. Götschel, S., Schiela, A., Weiser, M.: Kaskade 7 - a flexible finite element toolbox. Comp. Math. Appl. 81, 444–458 (2020)

    Article  MathSciNet  Google Scholar 

  8. Groth, S., Grünewald, D., Teich, J., Hannig, F.: A runtime system for finite element methods in a partitioned global address space. In: CF 2020: Proceedings of the 17th ACM International Conference on Computing Frontiers. ACM (2020). https://doi.org/10.1145/3387902.3392628

  9. Grynko, Y., Förstner, J.: Simulation of second harmonic generation from photonic nanostructures using the discontinuous Galerkin time domain method. In: Agrawal, A., Benson, T., De La Rue, R.M., Wurtz, G.A. (eds.) Recent Trends in Computational Photonics. SSOS, vol. 204, pp. 261–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55438-9_9

    Chapter  Google Scholar 

  10. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012). https://freefem.org/

    MathSciNet  MATH  Google Scholar 

  11. Hestenes, M.R., Stiefel, E., et al.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)

    Article  MathSciNet  Google Scholar 

  12. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2008). https://doi.org/10.1007/978-0-387-72067-8

    Book  MATH  Google Scholar 

  13. Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation (2012)

    Google Scholar 

  14. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. (SISC) 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  15. Liu, F., Zhuang, P., Turner, I., Anh, V., Burrage, K.: A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain. J. Comput. Phys. 293, 252–263 (2015)

    Article  MathSciNet  Google Scholar 

  16. Logg, A., Mardal, K.A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23099-8

    Book  MATH  Google Scholar 

  17. Mudalige, G.R., Giles, M.B., Reguly, I., Bertolli, C., Kelly, P.H.J.: OP2: an active library framework for solving unstructured mesh-based applications on multi-core and many-core architectures. In: Proceedings of Innovative Parallel Computing (InPar), pp. 1–12 (2012)

    Google Scholar 

  18. Puwal, S., Roth, B.J.: Forward Euler stability of the bidomain model of cardiac tissue. IEEE Trans. Biomed. Eng. 54(5), 951–953 (2007)

    Article  Google Scholar 

  19. Rathgeber, F., et al.: Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. (TOMS) 43(3), 24:1–24:27 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Rathgeber, F., et al.: PyOP2: a high-level framework for performance-portable simulations on unstructured meshes. In: Proceedings of the 2nd International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing (WOLFHPC), pp. 1116–1123. ACM, November 2012

    Google Scholar 

  21. Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 82. SIAM (2003)

    Google Scholar 

  22. Schiesser, W.E., Griffiths, G.W.: A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  23. Sermesant, M., Coudière, Y., Delingette, H., Ayache, N., Désidéri, J.A.: An electro-mechanical model of the heart for cardiac image analysis. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 224–231. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45468-3_27

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the German Federal Ministry of Education and Research (BMBF) within the collaborative research project “HighPerMeshes” (01IH16005). The authors gratefully acknowledge the funding of this project by computing time provided by the Paderborn Center for Parallel Computing (PC2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hannig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alhaddad, S. et al. (2021). HighPerMeshes – A Domain-Specific Language for Numerical Algorithms on Unstructured Grids. In: Balis, B., et al. Euro-Par 2020: Parallel Processing Workshops. Euro-Par 2020. Lecture Notes in Computer Science(), vol 12480. Springer, Cham. https://doi.org/10.1007/978-3-030-71593-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71593-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71592-2

  • Online ISBN: 978-3-030-71593-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics