Skip to main content

ICT-Enabled Agri-Food Systems

  • Chapter
  • First Online:
Environment and Climate-smart Food Production

Abstract

Today, despite increased information demand from consumers and food chain players alike, Europe’s food businesses and farmers are slow at adopting digital technologies. This is due in part to the inherent complexities of relevant products and processes, and in part to the dynamically changing open network organization of the food sector with its multitude of SMEs, its cultural diversity, its differences in expectations and in the ability to serve transparency needs. The agri-food sector needs to take more advantage of the potential of digital technologies. Relevant technologies may include Internet of Things, Artificial Intelligence, Big Data technologies, remote and localized sensing. This chapter will engage the agri-food community in supporting the development of solutions to remove the barriers to adoption of digital technologies, taking a multi-actor approach across different supply chains (conventional and organic) from farm to fork.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelnour, A., Fonseca, N., Rennane, A., Kaddour, D., & Tedjini, S. (2019). Design of RFID sensor tag for cheese quality monitoring. In 2019 IEEE MTT-S International Microwave Symposium (IMS). https://doi.org/10.1109/mwsym.2019.8700769.

  • Araújo, J., Gaspar, P. D., Silva, P. D., Andrade, L. P., & Nunes, J. (2015, December 3–4). Applicability of time-temperature indicators in supporting the tasting of gourmet products. In International Conference on Engineering – Engineering for Society (ICEUBI2015), University of Beira Interior, Covilhã, Portugal (ISBN: 978-989-654-261-0).

    Google Scholar 

  • Badia-melis, R., Carthy, U. M., Ruiz-Garcia, L., Garcia-Hierro, J., & Villalba, J. I. R. (2018). New trends in cold chain monitoring applications – A review. Food Control, 86, 170–182.

    Article  Google Scholar 

  • Bayo-Moriones, A., & Lera-López, F. (2007). A firm-level analysis of determinants of ICT adoption in Spain. Technovation, 27(6–7), 352–366. https://doi.org/10.1016/j.technovation.2007.01.003.

    Article  Google Scholar 

  • Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Tsakalidi, A. L., Barouchas, P., Salahas, G., Karagiannidis, G., Wand, S., & Goudos, S. K. (2020). Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things. https://doi.org/10.1016/j.iot.2020.100187.

  • Braga, L. R., & Peres, L. (2010). Novas tendências em embalagens para alimentos: Revisão. Boletim do Centro de Pesquisa e Processamento de Alimentos, 28(1), 69–84.

    CAS  Google Scholar 

  • Brizio, A. P. D. R., & Prentice, C. (2015). Development of an intelligent enzyme indicator for dynamic monitoring of the shelf-life of food products. Innovative Food Science & Emerging Technologies, 30, 208–217. https://doi.org/10.1016/j.ifset.2015.04.001.

    Article  CAS  Google Scholar 

  • Brody, A. L., Bugusu, B., Han, J. H., Sand, C. K., & McHugh, T. H. (2008). Scientific status summary. Journal of Food Science, 73(8), R107–R116. https://doi.org/10.1111/j.1750-3841.2008.00933.

    Article  CAS  PubMed  Google Scholar 

  • BUCHI. (2006). Determination of Total Volatile Basic Nitrogen (TVB-N) in fish and shrimps. Application note. BUCHI Labortechnik, pp. 1–8.

    Google Scholar 

  • Campos, J., Sharma, P., Gabiria, U. G., Jantunen, E., & Baglee, D. (2017). A big data analytical architecture for the asset management. Procedia CIRP, 64, 369–374. https://doi.org/10.1016/j.procir.2017.03.019.

    Article  Google Scholar 

  • Chadha, S. S., Singh, M., & Pardeshi, S. K. (2013). Bluetooth technology: Principle, applications and current status. International Journal of Computing Science and Communication, 4(2), 16–30.

    Google Scholar 

  • Dolci, R. (2017, July 4–8). IoT solutions for precision farming and food manufacturing, artificial intelligence applications in digital food. In 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, Italy. https://doi.org/10.1109/COMPSAC.2017.157.

  • EC. (2010, May). A digital Agenda for Europe. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, European Commission (EC), COM/2010/0245 f/2.

    Google Scholar 

  • EC. (2015, May). A digital single market strategy for Europe. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, European Commission (EC), COM/2015/0192.

    Google Scholar 

  • FAO. (2019). Livestock and the environment. Food and Agriculture Organization of the United Nations (FAO). Available: http://www.fao.org/livestock-environment. Accessed 18 Jan 2019.

  • Gao, T., Tian, Y., Zhu, Z., & Sun, D.-W. (2020). Modelling, responses and applications of time-temperature indicators (TTIs) in monitoring fresh food quality. Trends in Food Science & Technology, 99, 311–322. https://doi.org/10.1016/j.tifs.2020.02.019.

    Article  CAS  Google Scholar 

  • Gaspar, P. D., Soares, V. N. G. J., Caldeira, J. M. L. P., Andrade, L. P., & Domingues, C. (2015). Potential for technological modernisation and innovation based on ICT in agri-food companies of central region of Portugal. Journal of Advanced Agricultural Technologies (JOAAT), 2(2), 75–82. https://doi.org/10.12720/joaat.2.2.75-82.

    Article  Google Scholar 

  • Gaspar, P. D., Soares, V. N. G. J., Caldeira, J. M. L. P., Andrade, L. P., & Soares, C. D. (2019a). Technological modernization and innovation of traditional agri-food companies based on ICT solutions – The Portuguese case study. Journal of Food Processing and Preservation, 2019, e14271. https://doi.org/10.1111/jfpp.14271.

    Article  Google Scholar 

  • Gaspar, P. D., Silva, P. D., Andrade, L. P., Nunes, J., & Santo, C. E. (2019b). Chapter 9: Technologies for monitoring the safety of perishables food products. In Novel technologies and systems for food preservation. Hershey: IGI Global. (ISBN: 978-1-522-57894-9. https://doi.org/10.4018/978-1-5225-7894-9.

    Chapter  Google Scholar 

  • Ghaani, M., Cozzolino, C. A., Castelli, G., & Farris, S. (2016). An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology, 51, 1–11. https://doi.org/10.1016/j.tifs.2016.02.008.

    Article  CAS  Google Scholar 

  • Huang, H.-P., Chen, C.-S., & Chen, T.-Y. (2006). Mobile diagnosis based on RFID for food safety. In 2006 IEEE international conference on automation science and engineering. https://doi.org/10.1109/coase.2006.326908.

  • Javed, N., Habib, A., Amin, Y., Loo, J., Akram, A., & Tenhunen, H. (2016). Directly printable moisture sensor tag for intelligent packaging. IEEE Sensors Journal, 16(16), 6147–6148. https://doi.org/10.1109/JSEN.2016.2582847.

    Article  Google Scholar 

  • Jóźwiak, A., Milkovics, M., & Lakner, Z. (2016). A network-science support system for food chain safety: A case from Hungarian cattle production. International Food and Agribusiness Management Review, 19(A), 17–42. https://doi.org/10.22004/ag.econ.240694.

    Article  Google Scholar 

  • Kaloxylos, A., Wolfert, J., Verwaart, T., Terol, C. M., Brewster, C., Robbemond, R., & Sundmaker, H. (2013). The use of future internet technologies in the agriculture and food sectors: Integrating the supply chain. Procedia Technology, 8, 51–60. https://doi.org/10.1016/j.protcy.2013.11.009.

    Article  Google Scholar 

  • Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37. https://doi.org/10.1016/j.compag.2017.09.037.

    Article  Google Scholar 

  • Kassal, P., Steinberg, M. D., & Steinberg, I. M. (2018). Wireless chemical sensors and biosensors: A review. Sensors and Actuators, B: Chemical, 266, 228–245.

    Article  CAS  Google Scholar 

  • Kaur, S., & Puri, D. (2017). Active and intelligent packaging: A boon to food packaging. International Journal of Food Science and Nutrition, 2(4), 15–18.

    Google Scholar 

  • Kempenaar, C., et al. (2016). Big data analysis for smart farming: Results of TO2 project in theme food security (Wageningen plant research report, 655). Wageningen: Wageningen University & Research.

    Google Scholar 

  • Khanna, A., & Kaur, S. (2019). Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture. Computers and Eletronics in Agriculture, 157, 218–231. https://doi.org/10.1016/j.compag.2018.12.039.

    Article  Google Scholar 

  • Lakshen, G. A., Vranes, S., & Janev, V. (2017). Big data and quality: A literature review. 24th Telecommunications Forum, TELFOR 2016. https://doi.org/10.1109/TELFOR.2016.7818902.

  • Law, M. K., Bermak, A., & Luong, H. C. (2010). A sub-μW embedded CMOS temperature sensor for RFID food monitoring application. 2010 IEEE Journal of Solid-State Circuits, 45, 1246–1255. https://doi.org/10.1109/JSSC.2010.2047456.

    Article  Google Scholar 

  • Lehmann, R. J., Reiche, R., & Schiefer, G. (2012). Future internet and the agri-food sector: State-of-the-art in literature and research. Computers and Electronics in Agriculture, 89, 158–174. https://doi.org/10.1016/j.compag.2012.09.005.

    Article  Google Scholar 

  • Maigler, M. V., Alcalá, J. V., Berrueco, J. P., & Alcaide, T. R. (2013). Wireless sensor network solution for sustainable food production. Seminario Anual de Automática, Electrónica Industrial e Instrumentación 5.

    Google Scholar 

  • Maksimović, M., & Omanović-Mikličanin, E. (2017, October). Green internet of things and green nanotechnology role in realizing smart and sustainable agriculture. In VIII international scientific agriculture symposium, “Agrosym 2017”, Jahorina, Bosnia and Herzegovina. Book of proceedings 2017, pp. 2290–2295.

    Google Scholar 

  • Mayer, W. H. (2013). Integral ICT solutions supporting farmers businesses as well as environmental caretaking incl. carbon optimization. Procedia Technology, 8, 550–553. https://doi.org/10.1016/j.protcy.2013.11.077.

    Article  Google Scholar 

  • Mills, A. (2005). Oxygen indicators and intelligent inks for packaging food. Chemical Society Reviews, 34(12), 1003–1011.

    Article  CAS  Google Scholar 

  • Mitsubishi. (2019). Ageless eye, oxygen indicator. Mitsubishi Gas Chemical Company, Inc. Available at: https://www.mgc.co.jp/eng/products/sc/ageless-eye.html. Accessed 4 May 2019.

  • Morais, D., Gaspar, P. D., Silva, P. D., Nunes, J., Andrade, L. P., Simões, M. P., & Pires, L. C. (2019a, August 24–30). Current status and future trends of monitoring technologies for food products traceability. In The 25th IIR International Congress of Refrigeration (ICR 2019), Montreal, Canada. https://doi.org/10.18462/iir.icr.2019.1294.

  • Morais, D., Gaspar, P. D., & Silva, P. D. (2019b, November 27–29). Desenvolvimento de um dispositivo de monitorização de produtos frutícolas na cadeia de frio. In International Congress on Engineering – Engineering for Evolution (ICEUBI2019), Covilhã, Portugal.

    Google Scholar 

  • PACMAn. (2013). Embalamento ativo e inteligente : Inovações para o future. PACMAn Promoting atrractiveness Competitiveness and Internationalisation of Agro-food Cluster of the Med Area, Newsletter n.° 11/2013, pp. 1–14.

    Google Scholar 

  • Pavelková, A. (2013). Time temperature indicators as devices intelligent packaging. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(1), 245–251.

    Google Scholar 

  • Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of precision agriculture technologies adoption: A literature review. Procedia Technology, 8, 61–69. https://doi.org/10.1016/j.protcy.2013.11.010.

    Article  Google Scholar 

  • Pooja, S. B., Siva Balan, R. V., Anisha, M., Muthukumaran, M. S., & Jothikumar, R. (2019). Techniques Tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting. Computer Communications, 151, 266–274. https://doi.org/10.1016/j.comcom.2019.12.063.

    Article  Google Scholar 

  • Poppe, A., Wolfert, K. J., Verdouw, J., & Renwick, C. N. (2015). A European perspective on the economics of big data. Farm Policy Journal, 12(1), 11–19.

    Google Scholar 

  • Quelhas, A. S., Gaspar, P. D., & Castelo-Branco, M. (2018, October 3–4). Enzymatic time-temperature integrator device for chromatic quality check of Cova da Beira’s cherry (Portugal). In +AGRO 2018 – International Congress on Organizational Management, Energy Efficiency and Occupational Health and Safety in Agrifood Industry, CEi – Center for Innovative Companies, Castelo Branco, Portugal.

    Google Scholar 

  • Rabhi, L., Falih, N., Afraites, A., & Bouikhalene, B. (2019). Big data approach and its applications in various fields: Review. Procedia Computer Science, 155, 599–605. https://doi.org/10.1016/j.procs.2019.08.084.

    Article  Google Scholar 

  • Raja, R., Nguyen, T. T., Slaughter, D. C., & Fennimore, S. A. (2020). Real-time weed- crop classification and localisation technique for robotic weed control in lettuce. Biosystems Engineering, 192, 257–274. https://doi.org/10.1016/j.biosystemseng.2020.02.002.

    Article  Google Scholar 

  • Rato, N., & Gaspar, P. D. (2019, November 27–29). Embalagens ativas e inteligentes – Princípios de funcionamento, características e aplicações. In International Congress on Engineering – Engineering for Evolution (ICEUBI2019), Covilhã, Portugal.

    Google Scholar 

  • Reigones, R., Gaspar, P. D., & Garcia, N. (2019, November 27–29). Sistema de monitorização de sinais vitais em tempo real para gado. In International Congress on Engineering – Engineering for Evolution (ICEUBI2019), Covilhã, Portugal (In Portuguese).

    Google Scholar 

  • Rinner, D., Witschnig, H., & Merlin, E. (2008). Broadband NFC – A system analysis for the uplink. In 2008 6th international symposium on communication systems, networks and digital signal processing. https://doi.org/10.1109/csndsp.2008.4610713.

  • Sael, N. (2016). Extract five categories CPIVW from the 9V’s characteristics of the Big Data. International Journal of Advanced Computer Science and Applications, 7(3), 254–258. https://doi.org/10.14569/ijacsa.2016.070337.

    Article  Google Scholar 

  • Sami, S., et al. (2020). COVID-19: Challenges to GIS with Big Data. Geography and Sustainability. https://doi.org/10.1016/j.geosus.2020.03.005.

  • Schaefer, D., & Cheung, W. (2018). Smart packaging: Opportunities and challenges. Procedia CIRP, 72, 1022–1027. https://doi.org/10.1016/j.procir.2018.03.240.

    Article  Google Scholar 

  • Schiefer, G. (2004). New technologies and their impact on the agri-food sector: An economists view. Computers and Electronics in Agriculture, 43, 163–172. https://doi.org/10.1016/j.compag.2003.12.002.

    Article  Google Scholar 

  • Soon, J. M., & Manning, L. (2019). Developing anti-counterfeiting measures: The role of smart packaging. Food Research International, 123, 135–143. https://doi.org/10.1016/j.foodres.2019.04.049.

    Article  PubMed  Google Scholar 

  • TEMperature Products, Monitor Mark. Available in: tiptemp.com/Products/Rising-Time-Temperature-Indicating-Labels/THGSEN006-Temperature-Label-Monitor-Mark-Model-9860C-50F-10C-48Hrs.html. Accessed 4 May 2019.

  • Tullo, E., Finzi, A., & Guarino, M. (2019). Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. The Science of the Total Environment, 650, 2751–2760.

    Article  CAS  Google Scholar 

  • Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31–48. https://doi.org/10.1016/j.biosystemseng.2017.09.007.

    Article  Google Scholar 

  • UN. (2019). news.un.org [Online]. Available: https://news.un.org/pt/story/2019/02/1660701

  • Varandas, L., Faria, J., Gaspar, P. D., & Aguiar, M. L. (2020). Low-cost IoT remote sensor mesh for large-scale orchard monitorization. Journal of Sensor and Actuator Networks, 9(3), 44.https://doi.org/10.3390/jsan9030044.

  • Verdegem, P., & De Marez, L. (2011). Rethinking determinants of ICT acceptance: Towards an integrated and comprehensive overview. Technovation, 31(8), 411–423. https://doi.org/10.1016/j.technovation.2011.02.004.

    Article  Google Scholar 

  • Waldhoff, G., Curdt, C., Hoffmeister, D., & Bareth, G. (2012). Analysis of multitemporal and multisensor remote sensing data for crop rotation mapping. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I(7), 177–182. https://doi.org/10.5194/isprsannals-I-7-177-2012.

    Article  Google Scholar 

  • Wang, N., Zhang, N., & Wang, M. (2006). Wireless sensors in agriculture and food industry – Recent development and future perspective. Computers and Electronics in Agriculture, 50(1), 1–14.

    Article  CAS  Google Scholar 

  • Wang, Y., Mohan, C., Guan, J., Ravishankar, C., & Gunasekaran, S. (2018). Chitosan and gold nanoparticles-based thermal history indicators and frozen indicators for perishable and temperature-sensitive products. Food Control, 85, 186–193. https://doi.org/10.1016/j.foodcont.2017.09.031.

    Article  CAS  Google Scholar 

  • Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming – A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023.

    Article  Google Scholar 

  • Woolley, M. (2019). Bluetooth core specification v5.1. Bluetooth.

    Google Scholar 

  • Xueyuan, W., & Bo, Y. (2018). Research and design of traceability system of agricultural products. In Proceedings – 2018 international conference on Engineering Simulation and Intelligent Control, ESAIC 2018. https://doi.org/10.1109/ESAIC.2018.00097.

  • Yoshida, C. M., Maciel, V. B., Mendonça, M. E., & Franco, T. T. (2014). Chitosan bio based and intelligent films: Monitoring pH variations. LWT Food Science and Technology, 55(1), 83–89. https://doi.org/10.1016/j.lwt.2013.09.015.

    Article  CAS  Google Scholar 

  • Yuan, M., Ghannam, R., Karadimas, P., & Heidari, H. (2018). Flexible RFID patch for food spoilage monitoring. In 2018 IEEE Asia Pacific conference on postgraduate research in microelectronics and electronics (PrimeAsia). https://doi.org/10.1109/primeasia.2018.8598134.

  • Zhang, X., Sun, G., Xiao, X., Liu, Y., & Zheng, X. (2016). Application of microbial TTIs as smart label for food quality: Response mechanism, application and research trends. Trends in Food Science and Technology, 51, 12–23. https://doi.org/10.1016/j.tifs.2016.02.006.

    Article  CAS  Google Scholar 

  • Zhang, X., Shan, X., & Wei, J. (2017). Hybrid flexible smart temperature tag with NFC technology for smart packaging. In 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), Singapore, pp. 1–5. https://doi.org/10.1109/EPTC.2017.8277578.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro D. Gaspar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaspar, P.D., Soares, V.N.G.J., Caldeira, J.M.L.P. (2022). ICT-Enabled Agri-Food Systems. In: Galanakis, C.M. (eds) Environment and Climate-smart Food Production . Springer, Cham. https://doi.org/10.1007/978-3-030-71571-7_12

Download citation

Publish with us

Policies and ethics