Skip to main content

The End of the Cosmic Ray Spectrum

  • Chapter
  • First Online:
High Energy Cosmic Rays

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 462))

  • 920 Accesses

Abstract

The cosmic ray spectrum is so steep that even with the relatively big and stable air shower arrays that were built in 1950s it was not obvious whether it ends or it continues forever to really huge energies. It seemed quite possible that there are showers of energy 1020 eV and higher that cannot be seen only because of their very low flux. With a spectral index of 2.7 each higher decade of energy decreases the flux by a factor of 50. After the knee, which has already been suggested, and the steepening of the spectrum each decade would decrease the flux by more than a factor of 100.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Linsley, Phys. Rev. Lett. 10, 146 (1963)

    Article  ADS  Google Scholar 

  2. G. Cocconi, Nuovo Cim. 3, 1433 (1956)

    Article  ADS  Google Scholar 

  3. A.A. Penzias, R. Wilson, Ap. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  4. G.T. Zatsepin, V.A. Kuzmin, JETP Lett. 4, 78 (1966).

    ADS  Google Scholar 

  5. K. Greisen, Phys. Rev. Lett. 16, 748 (1966)

    Article  ADS  Google Scholar 

  6. J.C. Mather et al., Ap. J. 512, 511 (1999)

    Article  ADS  Google Scholar 

  7. A. Mücke et al., Comput. Phys. Commun. 124, 290 (2000)

    Article  ADS  Google Scholar 

  8. V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.L. Ginzburg, V.S. Ptuskin, Astrophysics of Cosmic Rays (North Holland, Amsterdam, 1990)

    Google Scholar 

  9. F.W. Stecker & M.H. Salamon, Ap. J. 512, 521 (1999)

    Article  ADS  Google Scholar 

  10. J.L. Puget, F.W. Stecker, J.H. Bredekamp, Ap. J. 205, 638 (1976)

    Article  ADS  Google Scholar 

  11. R.J. Protheroe, P.A. Johnson, Astropart. Phys. 4, 253 (1996)

    Article  ADS  Google Scholar 

  12. M.J. Chodorowski, A.A. Zdziarski, M. Sikora, Ap. J. 400, 181 (1992)

    Article  ADS  Google Scholar 

  13. V.S. Berezinsky, S.I. Grigorieva, Astron. Astrophys. 199,1 (1988)

    ADS  Google Scholar 

  14. A. Achterberg et al., MNRAS 328, 393 (2001)

    Article  ADS  Google Scholar 

  15. G. Bertone et al., Phys. Rev. D 66:3003 (2002)

    Article  Google Scholar 

  16. A.M. Hillas, Acta Physiol. Acad. Sci. Hung. 29, 355 (1970)

    Google Scholar 

  17. D.J. Bird et al., Ap. J. 441, 144 (1995)

    Article  ADS  Google Scholar 

  18. J. Abraham et al. (Auger Collaboration), NIM, A523, 50 (2004)

    Google Scholar 

  19. M. Nagano, A.A. Watson, Rev. Mod. Phys. 72, 689 (2000)

    Article  ADS  Google Scholar 

  20. M. Takeda et al., Ap. J. 522, 225 (1999)

    Article  ADS  Google Scholar 

  21. D.J. Bird et al., Ap. J. 441, 144 (1994)

    Article  ADS  Google Scholar 

  22. R.U. Abbasi et al. (HiRes Collaboration) Phys. Rev. Lett. 92, 151101 (2004)

    Google Scholar 

  23. B.N. Afanasiev et al., in Proceedings of the Tokyo Workshop on Techniques for the Study of the Extremely High Energy Cosmic Rays, ed. by M. Nagano (Institute for Cosmic Ray Research, University of Tokyo) p. 35

    Google Scholar 

  24. M. Roth et al. (Auger Collaboration), arXiv:0706.2096

    Google Scholar 

  25. L. Perrone et al. (Auger Collaboration), arXiv:0706.2643

    Google Scholar 

  26. M.A. Lawrence, R.J.O. Reid, A.A. Watson, J. Phys. G 17, 733 (1991)

    Article  ADS  Google Scholar 

  27. M. Ave et al., Astropart. Phys. 19, 47 (2003). astro-ph/0112253

    Article  ADS  Google Scholar 

  28. A.M. Hillas et al., Proc. 12th Int. Cosmic Ray Conf., 3 (Hobart, 1971), p. 1001

    Google Scholar 

  29. http://www-akeno.icrr.u-tokyo.ac.jp/AGASA/results.html

  30. M. Ave et al., Phys. Rev. Lett. 85, 2244 (2000)

    Article  ADS  Google Scholar 

  31. T.K. Gaisser et al., Phys. Rev. D 47, 1919 (1993)

    Article  ADS  Google Scholar 

  32. D.J. Bird et al., Phys. Rev. Lett. 71, 3401 (1993)

    Article  ADS  Google Scholar 

  33. T. Abu-Zayyad et al (HiRes Collaboration), Phys. Rev. Lett. 84, 4276 (2000)

    Google Scholar 

  34. R.U. Abbasi et al. (HiRes Collaboration), Ap. J. 622, 910 (2005)

    Google Scholar 

  35. M. Unger et al. (Auger Collaboration), arXiv:0706.1495; J. Abraham et al. (Auger Collaboration), Proc. 31st Int. Cosmic Ray Conf. (Lodz, Poland, 2009), arXiv:0906.2319

    Google Scholar 

  36. J. Linsley & A.A. Watson, Phys. Rev. Lett. 46, 459 (1981)

    Article  ADS  Google Scholar 

  37. A.A. Watson, EPJ Web Conf. 210, 00001 (2019)

    Article  Google Scholar 

  38. A.M. Hillas, Ann. Rev. Astron. Astrophys. 22, 425 (1984)

    Article  ADS  Google Scholar 

  39. C.A. Norman, D.B. Melrose, A. Achterberg, Ap. J. 454, 60 (1995)

    Article  ADS  Google Scholar 

  40. P. Kronberg, Rep. Prog. Phys. 21, 325 (1994)

    Article  ADS  Google Scholar 

  41. T.E. Clarke, P.P. Kronberg & H. Böhringer, Ap. J. 547, L111 (2001)

    Article  ADS  Google Scholar 

  42. H. Kang, D. Ryu, T.W. Jones, Ap. J. 456, 422 (1996)

    Article  ADS  Google Scholar 

  43. J.P. Rachen, P.L. Biermann, Astron. Astrophys. 272, 161 (1993)

    ADS  Google Scholar 

  44. F. Halzen, E. Zas, Ap. J. 488, 669 (1997)

    Article  ADS  Google Scholar 

  45. A.P. Szabo, R.J. Protheroe, Astropart. Phys. 2, 375 (1994)

    Article  ADS  Google Scholar 

  46. M. Milgrom, V. Usov, Ap. J. 449, L37 (1995)

    Article  ADS  Google Scholar 

  47. M. Vietri, Ap. J. 453, 883 (1995)

    Article  ADS  Google Scholar 

  48. E. Waxman, Ap. J., Phys. Rev. Lett. 386 (1995)

    Google Scholar 

  49. C. Cesarsky, V. Ptuskin, Proc. 23rd Int. Cosmic Ray Conf., vol. 2, (Calgary, 1993), p. 341

    Google Scholar 

  50. P. Blasi, R.I. Epstein, A.V. Olinto, Ap. J. 533, 123 (2000)

    Article  ADS  Google Scholar 

  51. J. Abraham et al. (Auger Collaboration), Astropart. Phys. 29, 243 (2008)

    Google Scholar 

  52. C.T. Hill, Nucl. Phys. B 224, 469 (1983)

    Article  ADS  Google Scholar 

  53. D.N. Schramm, C.T. Hill, Proc. 18th Int. Cosmic Ray Conf., vol. 2 (Bangalore, 1983), p. 393

    Google Scholar 

  54. V.S. Berezinsky & M. Kachelriess, Phys. Rev. D 63, 034007 (2001)

    Article  ADS  Google Scholar 

  55. R.J. Protheroe, P.L. Biermann, Astropart. Phys. 6, 45 (1996); err. ibid. 7, 181 (1997)

    Article  ADS  Google Scholar 

  56. P. Bhattacharjee, G. Sigl, Phys. Rep. 327, 109 (2000)

    Article  ADS  Google Scholar 

  57. C.T. Hill, D.N. Schramm, T.P. Walker, Phys. Rev. D 36, 1007 (1987)

    Article  ADS  Google Scholar 

  58. V.S. Berezinsky, A. Vilenkin, Phys. Rev. Lett. 79, 5202 (1997)

    Article  ADS  Google Scholar 

  59. M. Birkel, S. Sarkar, Astropart. Phys. 9, 297 (1998)

    Article  ADS  Google Scholar 

  60. T. Weiler, Astropart. Phys. 11, 303 (1999)

    Article  ADS  Google Scholar 

  61. D. Fargion, B. Mele, A. Salis, Ap. J. 517, 517 (1999)

    Article  Google Scholar 

  62. A. Achterberg et al., astro-ph/9907060

    Google Scholar 

  63. P. Blasi, S. Burles, A.V. Olinto, Ap. J. 512, L79 (1999)

    Article  Google Scholar 

  64. N. Hayashida et al., Astropart. Phys. 10, 303 (1999)

    Article  ADS  Google Scholar 

  65. T. Stanev et al., Phys. Rev. Lett. 75, 3056 (1995)

    Article  ADS  Google Scholar 

  66. Y. Uchihori et al., Astropart. Phys. 13, 151 (2000)

    Article  ADS  Google Scholar 

  67. E. Santos for the Auger Collaboration, arXiv:0706.2669

    Google Scholar 

  68. E. Armengaud for the Auger Collaboration, arXiv:0706.2640

    Google Scholar 

  69. S. Molerach for the Auger Collaboration, arXiv:0706.1749

    Google Scholar 

  70. M.-P. Véron-Cetty, P. Véron, A&A 455, 773 (2006)

    Article  ADS  Google Scholar 

  71. J. Abraham et al. (Auger Collaboration), Science, 318, 938 (2007)

    Google Scholar 

  72. J. Abraham et al. (Auger Collaboration), Astropart. Phys. 29, 188 (2008)

    Google Scholar 

  73. D.S. Gorbunov et al., arXiv:0804.1088

    Google Scholar 

  74. R.U. Abbasi et al. (HiRes Collaboration), Astropart. Phys. 30, 175 (2008)

    Google Scholar 

  75. P.L. Biermann et al., Nucl. Phys. B (Proc. Suppl.) 87, 417 (2000)

    Google Scholar 

  76. T. Stanev et al., Phys. Rev. D 62, 093005 (2000)

    Article  ADS  Google Scholar 

  77. F. Halzen et al., Astropart. Phys. 3, 151 (1995)

    Article  ADS  Google Scholar 

  78. M. Ave et al., Phys. Rev. D 65, 063007 (2002)

    Article  ADS  Google Scholar 

  79. K. Shinozaki et al., Ap. J. 571, L117 (2002)

    Article  ADS  Google Scholar 

  80. A. Etchgoyen et al. (Auger Collaboration), in Proc. 30th ICRC (Merida, 2007). arXiv:0710.1646

    Google Scholar 

  81. H.O. Klages et al. (Auger Collaboration), in Proc. 30th ICRC (Merida, 2007)

    Google Scholar 

  82. see http://www.euso-mission.org

  83. see http://owl.gsfc.nasa.gov

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stanev, T. (2021). The End of the Cosmic Ray Spectrum. In: High Energy Cosmic Rays. Astrophysics and Space Science Library, vol 462. Springer, Cham. https://doi.org/10.1007/978-3-030-71567-0_9

Download citation

Publish with us

Policies and ethics