Skip to main content

Cosmic Rays at the Top of the Atmosphere

  • Chapter
  • First Online:
High Energy Cosmic Rays

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 462))

  • 912 Accesses

Abstract

The atmosphere of the Earth provides more than ten interaction lengths for protons going straight down. If the observations were made at sea level such a proton would retain on the average less than 0.001 of its energy. The energy loss fluctuates from event to event and the energy spectrum of cosmic ray protons would be difficult to reconstruct. Heavier cosmic ray nuclei have significantly shorter interaction lengths and lose energy much faster. For these simple reasons the observations of the cosmic rays are much easier outside the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Maeno et al., Astropart. Phys. 16, 121 (2001)

    Article  ADS  Google Scholar 

  2. J.M. Grunsfeld et al., Ap. J. 327, L31 (1988)

    Article  ADS  Google Scholar 

  3. N.L. Grigorov et al., in Proc. 10th Int. Cosmic Ray Conf., vol. 1, (Calgary, 1967), p. 512

    Google Scholar 

  4. T.H. Burnett et al., Phys. Rev. Lett. 27, 1310 (1983)

    Google Scholar 

  5. A.V. Apanasenko et al., Astropart. Phys. 16, 13 (2001)

    Article  ADS  Google Scholar 

  6. M.S. Longair, High Energy Astrophysics (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  7. L. Biermann, Z. Astrophys. 29, 274 (1951)

    ADS  Google Scholar 

  8. E.N. Parker, Ap. J. 128, 664 (1958)

    Article  ADS  Google Scholar 

  9. E.N. Parker, Phys. Rev. 110, 1445 (1958)

    Article  ADS  Google Scholar 

  10. The Swarthmore/Newark neutron monitor is constructed and operated by the Bartol Research Institute of the University of Delaware

    Google Scholar 

  11. E.S. Seo et al., Ap. J. 378, 763 (1991)

    Article  ADS  Google Scholar 

  12. L.J. Gleeson, W.I. Axford, Ap. J. 154, 1011 (1968)

    Article  ADS  Google Scholar 

  13. L.A. Fisk, M.A. Forman, W.I. Axford, J. Geophys. Res. 78, 995 (1973)

    Article  ADS  Google Scholar 

  14. M. Garcia-Munoz et al., J. Geophys. Res. 91, 2858 (1986)

    Article  ADS  Google Scholar 

  15. C. Stoermer, Arch. Sci. Phys. Nat. Ser. 4, 32, 117 (1911)

    Google Scholar 

  16. J. W. Bieber, P. Evenson, Z. Lin, Antarctic J. 27, 318 (1992)

    Google Scholar 

  17. R.A. Langel, International Geomagnetic Reference Field, 1991 Revision, IAGA news, no. 38 (1991)

    Google Scholar 

  18. P. Lipari, T. Stanev, in Proc. 24th Int. Cosmic Ray Conf., vol. 1 (Rome, 1995)

    Google Scholar 

  19. J.P. Wefel, in Cosmic Rays, Supernovae and the Interstellar Medium, NATO ASI Series C, vol. 337 (Kluwer Academic Publishers, Dordrecht, 1990)

    Google Scholar 

  20. M. Casse, P. Goret, C.J. Cesarsky, Proc. 14th Int. Cosmic Ray Conf., vol. 2 (Munich, 1975), p. 646

    Google Scholar 

  21. M.M. Shapiro, Proc 20th Int. Cosmic Ray Conf., vol. 4 (Adelaide, 1990), p. 8

    Google Scholar 

  22. J.P. Meyer, L.O’C. Drury, D.C. Ellison, Space Sci. Rev. 86, 179 (1998)

    Google Scholar 

  23. R. Silberberg, C.H. Tsao, Ap. J. 352, L49 (1990)

    Article  ADS  Google Scholar 

  24. J.-P. Meyer, Ap. J. Suppl. 57, 173 (1985)

    Article  ADS  Google Scholar 

  25. H.J. Völk, P.L. Biermann, Ap. J. 333, L65 (1988)

    Article  ADS  Google Scholar 

  26. W.R. Webber, R.L. Golden, S.A. Stephens, Proc. 20th Int. Cosmic Ray Conf., vol. 1 (Moscow, 1987), p. 325

    Google Scholar 

  27. P.L. Biermann, T.K. Gaisser, T. Stanev, Phys. Rev. D 51, 3450 (1995)

    Article  ADS  Google Scholar 

  28. J.J. Engelmann et al., A&A 233, 233 (1990)

    Google Scholar 

  29. D. Müller et al., Ap. J. 374, 356 (1991)

    Article  ADS  Google Scholar 

  30. K. Asakimori et al., Proc. 23rd Int. Cosmic Ray Conf., vol. 2 (Calgary, 1993), p. 25

    Google Scholar 

  31. R. Silberberg et al., Ap. J. 363, 265 (1990)

    Article  ADS  Google Scholar 

  32. R. Bellotti et al., Phys. Rev. D60, 052002 (1999)

    ADS  Google Scholar 

  33. W. Menn et al., Ap. J. 533, 281 (2000)

    Article  ADS  Google Scholar 

  34. M. Boezio et al., Ap. J. 518, 457 (1999)

    Article  ADS  Google Scholar 

  35. J.Z. Wang et al., Ap. J. 564, 244 (2002)

    Article  ADS  Google Scholar 

  36. J. Alcaraz et al., Phys. Lett. B 490, 27 (2000)

    Article  ADS  Google Scholar 

  37. J. Alcaraz et al., Phys. Lett. B 494, 193 (2000)

    Article  ADS  Google Scholar 

  38. M.J. Ryan, J.F. Ormes, V.K. Balasubrahmanyan, Phys. Rev. Lett. 28 985 (&E1497) (1972)

    Google Scholar 

  39. I.P. Ivanenko et al., Proc. 23rd Int. Cosmic Ray Conf., vol. 2 (Calgary, 1993), p. 25

    Google Scholar 

  40. V.I. Zatsepin et al., Proc. 23rd Int. Cosmic Ray Conf., vol. 2 (Calgary, 1993), p. 13

    Google Scholar 

  41. Y. Kawamura et al., Phys. Rev. D 40, 729 (1989)

    Article  ADS  Google Scholar 

  42. K. Asakimori et al., Ap. J. 502, 278 (1998)

    Article  ADS  Google Scholar 

  43. J. Buckley et al., Ap. J. 429, 736 (1994)

    Article  ADS  Google Scholar 

  44. M. Aguilar et al., Phys. Rev. Lett. 114, 171103 (2015)

    Article  ADS  Google Scholar 

  45. P. Lipari, S. Vernetto, Astroparticle Physics, 120 (2020) 102441

    Article  Google Scholar 

  46. M. Aguilar et al., Phys. Rev. Lett. 115, 21101 (2015)

    Article  Google Scholar 

  47. M. Simon et al., Ap. J. 239, 712 (1980)

    Article  ADS  Google Scholar 

  48. M. Ichimura et al., Phys. Rev. D 48, 1949 (1993)

    Article  ADS  Google Scholar 

  49. T.K. Gaisser, T. Stanev, S. Tilav, Front. Phys. 8, 748 (2013)

    Article  ADS  Google Scholar 

  50. J.A. Earl, Phys. Rev. Lett. 6, 125 (1961)

    Article  ADS  Google Scholar 

  51. R.J. Protheroe, Ap. J. 254, 391 (1982)

    Article  ADS  Google Scholar 

  52. I.V. Moskalenko, A.W. Strong, Ap. J. 496, 694 (1998)

    Article  ADS  Google Scholar 

  53. M. Boezio et al., Ap. J. 532, 635 (2000)

    Article  Google Scholar 

  54. M.A. DuVernois et al., Ap. J. 559, 296 (2001)

    Article  ADS  Google Scholar 

  55. S. Torii et al., Ap. J. 559, 973 (2001)

    Article  ADS  Google Scholar 

  56. K. Yoshida et al., Adv. Spa. Res. 42, 1670 (2008)

    Article  ADS  Google Scholar 

  57. J. Chang et al. (ATIC collaboration), Nature 456, 362 (2008)

    Google Scholar 

  58. F. Aharonian et al. (HESS collaboration), Phys. Rev. Lett. 101, 261104 (2008). arXiv:0905.0105

    Google Scholar 

  59. A.A. Abdo et al. (Fermi/LAT Collaboration), Phys. Rev. Lett. 102, 181101 (2009)

    Google Scholar 

  60. D.L. Bertsch et al., Ap. J. 416, 587 (1993)

    Article  ADS  Google Scholar 

  61. J. Clem, P.A. Evenson, JGR 109, A07107 (2004)

    Article  ADS  Google Scholar 

  62. O. Adriani et al. (Pamela Collaboration), Nature 458, 607 (2009). arXiv:0810.4994v1

    Google Scholar 

  63. T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  64. M. Boezio et al., Ap. J. 561, 787 (2001)

    Article  ADS  Google Scholar 

  65. J.W. Mitchel et al., Phys. Rev. Lett. 76, 3057 (1996)

    Article  ADS  Google Scholar 

  66. M. Hof et al., Ap. J. 467, 33 (1996)

    Article  Google Scholar 

  67. S. Orito et al., Phys. Rev. Lett. 87, 1078 (2000)

    Article  ADS  Google Scholar 

  68. J.W. Bieber et al., Phys. Rev. Lett. 83, 674 (1999)

    Article  ADS  Google Scholar 

  69. O. Adriani et al. (PAMELA Collaboration), Phys. Rev. Lett. 102, 051101 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stanev, T. (2021). Cosmic Rays at the Top of the Atmosphere. In: High Energy Cosmic Rays. Astrophysics and Space Science Library, vol 462. Springer, Cham. https://doi.org/10.1007/978-3-030-71567-0_5

Download citation

Publish with us

Policies and ethics