Skip to main content

Induction

  • Chapter
  • First Online:
Flexible Forming for Fluid Architecture
  • 495 Accesses

Abstract

This chapter will demonstrate by three case studies that flexible moulding has the capacity to be used for the construction of fluid architecture. An overview of flexible moulding throughout history in which different materials and techniques were used is given as well. All known techniques in relation to flexible moulding are summarised and categorized for these materials in a schematic diagram in such a way that they can be compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • AEGION. Insituform. www.insituform.com (redirects to https://www.aegion.com/about/our-brands/insituform). Accessed 23 November 2016

  • Al Awwadi Ghaib M, Górski J (2001) Mechanical properties of concrete cast in fabric formworks. Cem Concr Res 31:1459–1465

    Article  Google Scholar 

  • Allison D (1959) Plastics move up in building. Architectural Forum 111(3)

    Google Scholar 

  • Ault GR (1965) Self rigidizing expandable sandwich aerospace shelters and solar collectors. Archer Daniels Midland Co. and Goodyear Aerospace Corp, Akron

    Google Scholar 

  • Bernard ES (2004) Shotcrete: More Engineering developments. Proceedings of the 2nd International Conference on Engineering Developments in Shotcrete. Taylor & Francis, London, p 97

    Google Scholar 

  • Boers S. Optimal forming. http://www.optimalforming.com. Accessed 26 August 2012

  • Bosc JL (2001) Joseph Monier et la naissance du ciment armé. Editions du Linteau, Paris, p 180

    Google Scholar 

  • Bronski M (2010) Week 39 and beyond—“Rome… by all means Rome” (And back in the U.S.A.). https://vitruviusfootsteps.wordpress.com/2010/10/01/week-39-and-beyond-%e2%80%93-%e2%80%9crome%e2%80%a6by-all-means-rome%e2%80%9d-and-back-in-the-u-s-a/. Accessed 23 November 2016

  • Buchholz U (2007) Casting technique enables faster manufacture of automotive components. http://www.materialstoday.com/composite-parts/features/casting-technique-enables-faster-manufacture-of/. Accessed 23 January 2017

  • Cadogan DP, Scarborough S (2001) Rigidizable materials for use in gossamer space inflatable structures. AIAA gossamer spacecraft form, Seattle

    Book  Google Scholar 

  • California Institute of Earth Architecture. CalEarth. http://calearth.org. 23 November 2016

  • Cauberg N, Parmentier B, Vanneste M, Mollaert M (2009) Shell elements of architectural concrete using fabric formwork—Part 1: concept. DJ Oehlers, MC Griffith, R Seracino eds, Proceedings International Symposium on Fibre Reinforced Polymer Reinforcement for Concrete Structures, FRFRCS-9, paper ID 00188 on CD-Rom, p 53

    Google Scholar 

  • Cennini C (1954) The craftsman’s handbook, vol 2. Courier Corp, North Chelmsford

    Google Scholar 

  • Chandler A, Pedreschi R (2007) Fabric formwork. Riba Publishing, London

    Google Scholar 

  • Chilton JC (2009) 39 etc.: Heinz Isler’s infinite spectrum of new shapes for shells. Proceedings of the International Association for Shell and Spatial Structures, pp 51–62

    Google Scholar 

  • Coar L, Mueller C, Laet L de, Hare J, Wiese K, Oberlin S (2016) Fabrigami: design and fabrication of an origami-inspired ice and fabric shell. Proceedings of the International Society of Shell and Space Structures, University of Tokyo, Tokyo, p 144

    Google Scholar 

  • Collins P et al (2004) Concrete: the vision of a new architecture. McGill-Queen’s Press, Montreal

    Google Scholar 

  • Concrete Canvas. Concrete canvas: erosion control & containment. http://www.concretecanvas.co.uk/. Accessed 28 February 2017

  • Conlon C (2012) James Waller’s contribution to the advancement of shell roof construction and fabric formed concrete. Paper 10, Proceedings of the second international conference on Flexible Formwork

    Google Scholar 

  • Cyril Bath Company (2005). http://www.cyrilbath.com. 23 November 2016

  • Delijani F (2010) The evaluation of changes in concrete properties due to fabric formwork. University of Manitoba, Winnipeg

    Google Scholar 

  • Eigenraam P (2013) Flexible mould for production of double-curved concrete elements. Delft University of Technology, Delft

    Google Scholar 

  • Encyclopaedia Britannica. Plaster-work. https://www.theodora.com/encyclopedia/p2/plasterwork.html. Accessed 23 November 2016

  • Encyclopaedia Britannica. Tapestry. http://www.theodora.com/encyclopedia/t/tapestry.html. Accessed 23 November 2016

  • FAB-FORM. Fab-Form homepage. http://www.fab-form.com/. Accessed 23 November 2016

  • Fabric Forming. http://fabricforming.org/. Accessed 23 November 2016

  • FD Technologies. http://fdtechnologies.eu/. Accessed 23 November 2016

  • Graham T (2003) Wattle and daub: craft, conservation and Wiltshire case study. University of Bath, Dept of Architecture and Civil Engineering, Bath, Dissertation. http://www.tonygraham.co.uk/house_repair/wattle_daub/WD.html

  • Haas EG, Kesselman M (1996) Adjustable form die. US Patent 5,546,784

    Google Scholar 

  • Haase W, Sobek W (2007) Vacuumatics—Deflated forms of construction. Detail 10:1148–1159

    Google Scholar 

  • Hardt DE, Olson BA, Allison BT, Pasch K (1981) Sheet metal forming with discrete die surfaces. Ninth North American Manufacturing Research Conference Proceedings, pp 140–144

    Google Scholar 

  • Hardt DE, Webb RD (1982) Sheet metal die forming using closed-loop shape control. CIRP Ann 31:165–169

    Article  Google Scholar 

  • Hashemian F (2012) Structural behaviour and optimization of moment-shaped reinforced concrete beams. University of Manitoba, Winnipeg

    Google Scholar 

  • Hawkins WJ, Herrmann M, Ibell TJ, Kromoser B, Michaelski A, Orr JJ, Pedreschi R, Pronk ADC, Schipper HR, Shepherd P, Veenendaal D, Wansdronk R, West M (2016) Flexible formwork technologies: a state of the art review. Structural Concrete. Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin

    Google Scholar 

  • Head J (2012) No Nails, No Lumber: The Bubble Houses of Wallace Neff. Chronicle Books, San Francisco

    Google Scholar 

  • Hess F (1931) Process and apparatus for manufacturing automatically accurate individual foot supports for shoes. US Patent 1,826,783

    Google Scholar 

  • Holgate A (1997) The Art of Structural Engineering: The work of Jörg Schalich and his team. Axel Menges, Stuttgart, pp 52–55

    Google Scholar 

  • Huijben F (2016) Vacuumatic formwork: a novel granular manufacturing technique for producing topology-optimised structures in concrete. Granular Matter 18(2):1–8

    Article  Google Scholar 

  • Huijben F, Herwijnen F van, Nijsse R (2009) Vacuumatics 3D formwork Systems: Customized Free-Form Solidification. Proceedings of International Conference on Textile Composites and Inflatable Structures, Stuttgart

    Google Scholar 

  • Huijben F, Herwijnen F van, Nijsse R (2012) Structural Morphology of VACUUMATICS 3D Formwork Systems: Constructing Thin Concrete Shells with ‘Nothing’. ICFF Conference proceeding paper 14

    Google Scholar 

  • Humphrey DH (1971) Mold forming device. US Patent 3,596,869

    Google Scholar 

  • Huybers P (1999) Draagconstructies van gebouwen, dl 10: Pneumatische constructies. TU Delft, Faculteit Civiele Techniek vakgroep Utiliteitsbouw, Delft

    Google Scholar 

  • Isler H (1961) New Shapes for Shells. Bulletin of the International Association for Shell Structures, 8, c-3

    Google Scholar 

  • Jepsen CR, Kristensen MK, Kirkegaard PH (2010) Flexible mould for precast concrete elements. Proceedings of International Symposium of the International Association for Shell and Spatial Structures (IASS): Spatial Structures—Temporary and permanent: Shanghai, China, November 8–12–2010. China Architecture and Building Press, Shanghai, pp 2726–2737

    Google Scholar 

  • Kilian A, Ochsendorf J (2005) Particle-springh systems for structural form-finding. IAAS Journal 46(147)

    Google Scholar 

  • Kostova K (2016) Design and constructability of fabric formed concrete: physical modelling for assessment of digital form finding methods. Proceedings of 11th FIB International PhD Symposium in Civil Engineering. University of Tokyo, Tokyo

    Google Scholar 

  • Kristensen MK, Raun C (2010) A flexible mat for providing a dynamically reconfigurable double-curved moulding surface in a mould. US Patent 9,168,678 B2

    Google Scholar 

  • Kromoser B (2015) Pneumatisches Verformen von ausgehärtetem Beton—die Errichtung von Betonschalen aus ursprünglich ebenen Platten. TU Wien, Vienna

    Google Scholar 

  • Kromoser B, Kollegger J (2015a) Application areas for pneumatic forming of hardened concrete. Journal of the International Association for Shell and Spatial Structures (IASS) 56(3):187–198

    Google Scholar 

  • Kromoser B, Kollegger J (2015b) Pneumatic forming of hardened concrete—Building shells in the 21st century. Structural Concrete 16(2):161–171

    Article  Google Scholar 

  • Lawton A, Miller-Johnson R (2012) Case study fabric formed stair. ICFF 2012 Conference Proceedings Paper 19

    Google Scholar 

  • Lee DSH (2011) Study of construction methodology and structural behaviour of fabric formed form-efficient reinforced concrete beams. University of Edinburgh, Edinburgh

    Google Scholar 

  • Lichtenberg JJN (2005) Slimbouwen®. Aeneas Publishers, Boxtel

    Google Scholar 

  • Linkwitz K, Schek HJ (1971) Einige Bemerkungen zur Berechnung von vorgespannten Seilnetzkonstruktionen. Ingenieur-archiv, pp 145–158

    Google Scholar 

  • Massimo D (1984) Renzo Piano, projects and buildings 1964–1983. Architectural Press, London

    Google Scholar 

  • Millar W (1899) Plastering plain and decorative. London: B.T. Batsford; New York: Truslove, Hanson & Comba ltd., London & New York, pp 343–344

    Google Scholar 

  • Milne KR, Pedreschi R, Richardson L (2015) Tailoring fabric formwork. Proceedings of the International Society of Flexible Formwork (ISOFF), Amsterdam

    Google Scholar 

  • Munro C, Walczyk D (2007) Reconfigurable pin-type tooling: a survey of prior art and reduction to practice. Journal of Manufacturing Science and Engineering 129(551)

    Google Scholar 

  • Nakajima N (1969) A newly developed technique to fabricate complicated dies and electrodes with wires. Bulletin of the JSME 12(54):1546–1554

    Article  Google Scholar 

  • Newby F (2016) Early reinforced concrete. Routledge, New York

    Book  Google Scholar 

  • NOE. NOE-Schaltechnik. http://www.noe.de/. Accessed 23 November 2016

  • North Sails. North Sails—The worldwide leader in sailmaking. http://na.northsails.com/. Accessed 23 November 2016

  • Oesterle S, Vansteenkiste A, Mirjan A (2012) Zero waste free-form formwork. Proceedings of the ICFF 2012, paper 24

    Google Scholar 

  • Orr JJ (2012) Flexible formwork for concrete structures. University of Bath, Bath

    Google Scholar 

  • Orr JJ, Darby AP, Ibell TJ, Evernden MC (2012) Optimization and durability in fabric cast ‘Double T’ beams. ICFF Conference Proceedings Paper 25

    Google Scholar 

  • Orr JJ, Darby AP, Ibell TJ, Evernden MC (2013) Durability enhancements using fabric formwork. Magazine of Concrete Research 65(20):1236–1245

    Article  Google Scholar 

  • Orr JJ, Marti D (2012) Sydney rope wall. ICFF 2012 Conference proceedings, poster 15

    Google Scholar 

  • Otto F (1962a) Zugbeanspruchte Konstruktionen, vol 1. Ullstein, Frankfurt am Main

    Google Scholar 

  • Otto F (1962b) Zugbeanspruchte Konstruktionen, vol 2. Ullstein, Frankfurt am Main

    Google Scholar 

  • Otto F (1973) Tensile structures; design, structure, and calculation of buildings of cables, nets, and membranes, vol 1–2. The MIT Press, Cambridge, MA

    Google Scholar 

  • Pedreschi R (2013) Fabric formed concrete structures and architectural elements. Proceedings of Structures and Architecture: New concepts, applications and challenges, ICSA 2013 Second International Conference on Structures and Architecture, Guimarães

    Google Scholar 

  • Pedreschi R (2015) A preliminary study of the strength of non-prismatic columns using fabric formwork. Proceedings of the International Society of Flexible Formwork, Amsterdam

    Google Scholar 

  • Pedreschi R, Lee DSH (2014) Structure, form and construction. Fabric Formwork for Concrete. Proceedings of Across: Architectural Research through to Practice: 48th International Conference of the Architectural Science Association 2014

    Google Scholar 

  • Piano R (1969) Progettazione sperimentale per strutture a guscio—Experimental project of shell structures. Casabella 335:38–49

    Google Scholar 

  • Pronk ADC et al (2006) TU Delft. http://bk.tudelft.nl. Accessed 13 November 2016

  • Roland C (1965) Frei Otto-Spannweiten; Ideen und Versuche zum Leichtbau. Ein Werkstattbericht. Ullstein, Berlin

    Google Scholar 

  • Roman Aqueducts. Cherchell (Algeria). http://www.romanaqueducts.info/aquasite/cherchell/index.html. Accessed 23 November 2016

  • Scarre C (2005) The human past: World prehistory and the development of human societies. Thames & Hudson, London

    Google Scholar 

  • Schipper HR (2015) Double-curved precast concrete elements: Research into technical viability of the flexible mould method. Delft University of Technology, Delft

    Google Scholar 

  • Schlaich J, Schüller M (1999) Ingenieurbau Führer Baden-Württemberg. BauwerkVerlag GmbH, Berlin

    Google Scholar 

  • Shah SP (1974) New reinforcing materials in concrete. Journal of the American Concrete Institute, 257–262

    Google Scholar 

  • Sobek W (1987) Auf Pneumatisch Gestützten Schalungen Hergestellte Betonschalen, Stuttgart

    Google Scholar 

  • Solomita P (2015) Pier Luigi Nervi vaulted architecture: towards new structures. University Press, Bologna

    Google Scholar 

  • Spadea S, Orr J, Yang Y (2015) Bespoke reinforcement for optimised concrete structures. Proceedings of IASS Annual Symposium: Future Visions—IASS/ISOFF

    Google Scholar 

  • Stohr K (2006) Design like you give a damn: Architectural responses to humanitarian crises. Metropolis Books, New York, p 106

    Google Scholar 

  • Sullivan EV, Haas EG, Schwarz RC, Kesselman M, Peck AN, Papazian JM (2000) Individual motor pin module. US Patent 6,012,314

    Google Scholar 

  • Swammy RN (1992) Fibre reinforced cement and concrete. Proceedings of the 4th International Symposium held by E. RILEM & F.N. Spon 17

    Google Scholar 

  • Tysmans T, Wastiels J, Adriaenssens S, Verwimp E (2012) Flexible reinforcement systems for spatially curved concrete structures. Proceedings of the 2nd International Conference on Flexible Formwork, 2012. University of Bath, Bath

    Google Scholar 

  • University of Manitoba. Mark West. http://www.umanitoba.ca/cast_building/people/mark_west.html. Accessed 23 November 2016

  • Unno K (2008) Lecture by Kenzo Unno. Fabric Formwork Conference Speakers Presented at the First International Conference on Fabric Formwork

    Google Scholar 

  • Veenendaal D (2008) Evolutionary optimisation of fabric formed structural elements. Master’s thesis

    Google Scholar 

  • Veenendaal D, Block P (2014) Design process for prototype concrete shells using a hybrid cable net and fabric formwork. Eng Struct 75:39–50

    Article  Google Scholar 

  • Veenendaal D, West M (eds) (2016) The fabric formwork book: methods for building new architectural and structural forms in concrete. Routledge, New York

    Google Scholar 

  • Veenendaal D, West M, Block P (2011) History and overview of fabric formwork: using fabrics for concrete casting. Structural Concrete 12(3):164–177

    Article  Google Scholar 

  • Veltkamp M (2007) Free form structural design, schemes, systems & prototypes of structures for irregular shaped buildings. Research in Architectural Engineering series vol 6. Delft University Press, Delft

    Google Scholar 

  • Verhaegh RWA (2010) Free forms in concrete: the fabrication of free-form concrete segments using fabric formwork. TU Eindhoven, Eindhoven

    Google Scholar 

  • Verwimp E, Remy O, Wastiels J, Tysmans T (2012) Structural stay-in-place formwork in textile reinforced cement composites for very slender concrete columns. Proceedings of the 2nd International Conference on Flexible Formwork, 2012. University of Bath, Bath

    Google Scholar 

  • Verwimp E, Tysmans T, Mollaert M (2016) Numerical evaluation of structural stay-in-place formwork in textile reinforced cement composite for concrete shells. Advances in Structural Engineering 19(4)

    Google Scholar 

  • Vitruvius P, Morgan MH, Langford Warren H (1960) Vitruvius the ten books on architecture. Dover Publications, Mineola, p 45

    Google Scholar 

  • Vollers KJ, Rietbergen D (2009) A method and apparatus for forming a double-curved panel from a flat panel. US Patent 12/633,055

    Google Scholar 

  • Vollers KJ, Rietbergen D (2010) Werkwijze en Mal voor het Vervaardigen van een Gebogen Paneel. Delft University of Technology, Delft

    Google Scholar 

  • Walczyk DF, Lakshmikanthan J, Kirk DR (1998) Development of a reconfigurable tool for forming of aircraft panels. J. Manufacturing Systems 17(4):287–296

    Article  Google Scholar 

  • West M (2013) Fabric-formed pre-cast panels—Simple, economical formwork for natural forms and structural efficiency. Proceedings of Façade Tectonics: Precast Concrete, USA

    Google Scholar 

  • West M (2016) The fabric formwork book: methods for building new architectural and structural forms in concrete. Routledge, London

    Book  Google Scholar 

  • West M, Araya R (2012) Recent fabric formwork construction projects. Proceedings of the Second International Conference on Flexible Formwork, University of Bath

    Google Scholar 

  • Zimmermann G (2007) Membran Beton Gitterschalen Tragwerke—Entwicklung und Vorbemessung. Books on Demand

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Pronk .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pronk, A. (2021). Induction. In: Flexible Forming for Fluid Architecture. Springer, Cham. https://doi.org/10.1007/978-3-030-71551-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71551-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71550-2

  • Online ISBN: 978-3-030-71551-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics