Skip to main content

The Role of the Explanatory Key in Solving Tasks Based on Submicroscopic Representations

  • Chapter
  • First Online:
Applying Bio-Measurements Methodologies in Science Education Research

Abstract

Since the building blocks of matter—atoms, molecules and ions—cannot be perceived naturally by our senses, the desire to reveal “the world of the invisible” has inspired philosophers and scientists for many centuries. From Plato, or even earlier, to the present day, people have tried to visualise their ideas about the nature of matter by building mental and concrete models (Gregory in Plato’s philosophy of science. Bloomsbury, 2000). The important role of using models and modelling in science discoveries to visualise concepts and processes at the particle level has been manifested since the nineteenth century by many leading chemists such as Kekulé, Van’t Hoff, Pauling, Watson and Crick (Justi & Gilbert in Chemical education: Towards research-based practice. Springer, pp. 47–68, 2002), often related with corresponding Nobel Prizes awards in chemistry, physics and medicine. In contemporary science, new developments related to the use of models and modelling are supported by the application of computer methods and computer graphics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaygun, S., & Jones, L. L. (2014). Words or pictures: A comparison of written and pictorial explanations of physical and chemical equilibria. International Journal of Science Education, 36(5), 783–807.

    Article  Google Scholar 

  • Al-Balushi, S. M., & Al-Hajri, S. H. (2014). Associating animations with concrete models to enhance students’ comprehension of different visual representations in organic chemistry. Chemistry Education Research and Practice, 15(1), 47–58.

    Article  Google Scholar 

  • Bačnik, A., Bukovec, N., Vrtačnik, M., Poberžnik, A., Križaj, M., Stefanovik, V., … Preskar, S. (2011). Učni načrt. Program osnovna šola. Kemija [Curicculum. Primary school. Chemistry.]. Ministrstvo za šolstvo in šport, Zavod RS za šolstvo. http://www.mizs.gov.si/fileadmin/mizs.gov.si/pageuploads/podrocje/os/prenovljeni_UN/UN_kemija.pdf.

  • Barke, H. D., Hazari, A., & Yitbarek, S. (2009). Misconceptions in chemistry: Addressing perceptions in chemical education. Springer Science & Business Media.

    Google Scholar 

  • Barke, H. D., & Wirbs, H. (2002). Structural units and chemical formulae. Chemistry Education Research and Practice, 3(2), 185–200.

    Article  Google Scholar 

  • Corey, R. B., & Pauling, L. (1953). Molecular models of amino acids, peptides, and proteins. Review of Scientific Instruments, 24(8), 621–627.

    Article  Google Scholar 

  • Devetak, I., Vogrinc, J., & Glažar, S. A. (2010). States of matter explanations in Slovenian textbooks for students aged 6 to 14. International Journal of Environmental and Science Education, 5(2), 217–235.

    Google Scholar 

  • Devetak, I., & Vogrinc, J. (2013). The criteria for evaluating the quality of the science textbooks. In M. Swe Khine (Ed.), Critical analysis of science textbooks (pp. 3–15). Springer.

    Google Scholar 

  • Ferk Savec, V., Hrast, Š., Devetak, I., & Torkar, G. (2016). Beyond the use of an explanatory key accompanying submicroscopic representations. Acta Chimica Slovenica, 63(4), 864–873.

    Article  Google Scholar 

  • Ferk Savec, V., Vrtačnik, M., & Gilbert, J. K. (2005). Evaluating the educational value of molecular structure representations. In J. K. Gilbert (Ed.), Visualization in Science Education (pp. 269–297). Springer.

    Google Scholar 

  • Ferk Savec, V., Sajovic, I., & Wissiak Grm, K. S. (2009). Action research to promote the formation of linkages by chemistry students between the macro, submicro, and symbolic representational levels. In J. K. Gilbert (Ed.), Multiple representations in chemical education (Models and Modeling in Science Education, vol. 4, pp. 309–331). Springer.

    Google Scholar 

  • Francoeur, E. (1997). The forgotten tool: The design and use of molecular models. Social Studies of Science, 27(1), 7–40.

    Article  Google Scholar 

  • Furió-Más, C., Luisa Calatayud, M., Guisasola, J., & Furió-Gómez, C. (2005). How are the concepts and theories of acid–base reactions presented? Chemistry in textbooks and as presented by teachers. International Journal of Science Education, 27(11), 1337–1358.

    Article  Google Scholar 

  • Gilbert, J. K., Reiner, M., & Nakhleh, M. (2008). Visualization: Theory and practice in science education. Springer.

    Google Scholar 

  • Gkitzia, V., Salta, K., & Tzougraki, C. (2011). Development and application of suitable criteria for the evaluation of chemical representations in school textbooks. Chemistry Education Research and Practice, 12(1), 5–14.

    Article  Google Scholar 

  • Gregory, A. (2000). Plato’s philosophy of science. Bloomsbury.

    Google Scholar 

  • Hardwicke, A. J. (1995). Using molecular models to teach chemistry. Part I : modelling molecules. School Science Review, 77(278), 59–64.

    Google Scholar 

  • Harrison, A. G. (2001). How do teachers and textbook writers model scientific ideas for students? Research in Science Education, 31(3), 401–435.

    Article  Google Scholar 

  • Havanki, K. L., & Vanden Plas, J. R. (2014). Eye tracking methodology for chemistry education research. In D. M. Bunce & R. S. Cole (Eds.), Tools of chemistry education research (pp. 191–218). American Chemical Society.

    Google Scholar 

  • Helmenstine, T. (2019). Molecule atom colors—CPK colors. https://sciencenotes.org/molecule-atom-colors-cpk-colors/.

  • Hinze, S. R., Rapp, D. N., Williamson, V. M., Shultz, M. J., Deslongchamps, G., & Williamson, K. C. (2013). Beyond ball-and-stick: Students’ processing of novel STEM visualizations. Learning and Instruction, 26, 12–21.

    Article  Google Scholar 

  • Hrast, Š., & Ferk Savec, V. (2017a). Informational value of submicroscopic representations in Slovenian chemistry textbook sets. Journal of Baltic Science Education, 16(5), 694–705.

    Google Scholar 

  • Hrast, Š., & Ferk Savec, V. (2017b). The integration of submicroscopic representations used in chemistry textbook sets into curriculum topics. Acta Chimica Slovenica, 64(4), 959–967.

    Article  Google Scholar 

  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted learning, 7(2), 75–83.

    Article  Google Scholar 

  • Jones, L. L. (2013). How multimedia-based learning and molecular visualization change the landscape of chemical education research. Journal of Chemical Education, 90(12), 1571–1576.

    Article  Google Scholar 

  • Jmol Colors. (n.d.). Colors. http://jmol.sourceforge.net/jscolors/.

  • Justi, R., & Gilbert, J. K. (2002). Models and modelling in chemical education. In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, & J. H. Van Driel (Eds.), Chemical education: Towards research-based practice (pp. 47–68). Springer.

    Google Scholar 

  • Kahveci, A. (2010). Quantitative analysis of science and chemistry textbooks for indicators of reform: A complementary perspective. International Journal of Science Education, 32(11), 1495–1519.

    Article  Google Scholar 

  • Koltun, W. L. (1965). Patent 3170246. U. S. https://patents.google.com/patent/US3170246A/en.

  • Laçin-Şimşek, C. (2011). Women scientist in science and technology textbooks in Turkey. Journal of Baltic Science Education, 10(4), 277–284.

    Google Scholar 

  • Majidi, S., & Mäntylä, T. (2011). Knowledge organization in physics text books: A case study of magnetostatics. Journal of Baltic Science Education, 10(4), 285–299.

    Google Scholar 

  • Mason, M., Pluchino, P., Tornatora, M. C., & Ariasi, N. (2013). An eye-tracking study of learning from science text with concrete and abstract illustrations. The Journal of Experimental Education, 81(3), 356–384.

    Article  Google Scholar 

  • Merriam-Webster Dictionary. (n.d.). https://www.merriam-webster.com/dictionary.

  • Mumba, F., Chabalengula, V. M., Wise, K., & Hunter, W. J. (2007). Analysis of New Zambian high school physics syllabus and practical examinations for levels of inquiry and inquiry skills. Eurasia Journal of Mathematics, Science & Technology Education, 3(3), 213–220.

    Article  Google Scholar 

  • Nakhleh, M. B. (1992). Why some students don’t learn chemistry: Chemical misconceptions. Journal of Chemical Education, 69(3), 191–196.

    Article  Google Scholar 

  • Nobel Assembly at Karolinska Institutet. (2019). Press release: The Nobel Prize in Physiology or Medicine 2019. https://www.nobelprize.org/prizes/medicine/2019/press-release.

  • Pavlin, J., Glažar, S. A., Slapničar, M., & Devetak, I. (2019). The impact of studentsʼ educational background, interest in learning, formal reasoning and visualisation abilities on gas context-based exercises achievements with submicro-animations. Chemistry Education Research and Practice, 20(3), 633–649.

    Article  Google Scholar 

  • Petersen, Q. R. (1970). Some reflections on the use and abuse of molecular models. Journal of Chemical Education, 47(1), 24–29.

    Article  Google Scholar 

  • Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62(8), 1457–1506.

    Article  Google Scholar 

  • Slapničar, M., Tompa, V., Glažar, S., & Devetak, I. (2014). Fourteen-year-old students’ misconceptions regarding the sub-micro and symbolic levels of specific chemical concepts. Journal of Baltic Science Education, 17(4), 620–632.

    Article  Google Scholar 

  • Slykhuis, D. A., Wiebe, E. N., & Annetta, L. A. (2005). Eyetracking students’ attention to PowerPoint photographs in a science education setting. Journal of Science Education and Technology, 14(5–6), 509–520.

    Article  Google Scholar 

  • Torkar, G., Veldin, M., Glažar, S. A., & Podlesek, A. (2018). Why do plants wilt? Investigating students’ understanding of water balance in plants with external representations at the macroscopic and submicroscopic levels. Eurasia Journal of Mathematics, Science & Technology Education, 14(6), 2265–2276.

    Google Scholar 

  • Van Driel, J. H., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141–1153.

    Article  Google Scholar 

  • Yen, M. H., & Yang, F. Y. (2016), Methodology and application of eye-tracking techniques in science education. In M. H. Chiu (Ed.), Science education research and practices in Taiwan (pp. 249–277). Springer.

    Google Scholar 

Download references

Acknowledgements

The reseach work was partialy supported by the Faculty of Education University of Ljubljana, project—framework “Interni razpis za financiranje raziskovalnih in umetniških projektov 2015/16 [Internal call for funding of research and art projects 2015/16]”, project title “Pojasnjevanje uspešnosti reševanja kemijskih nalog na submikro ravni ter preučevanje kompetentnosti bodočih učiteljev kemije za njihovo poučevanje [The efficiency of students in solving chemical tasks at the submicroscopic level and investigating the ability of future teachers to use them in classroom practice]”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Ferk Savec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferk Savec, V., Hrast, Š. (2021). The Role of the Explanatory Key in Solving Tasks Based on Submicroscopic Representations. In: Devetak, I., Glažar, S.A. (eds) Applying Bio-Measurements Methodologies in Science Education Research. Springer, Cham. https://doi.org/10.1007/978-3-030-71535-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71535-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71534-2

  • Online ISBN: 978-3-030-71535-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics