Skip to main content

The Impact of Students’ Educational Background, Formal Reasoning, Visualisation Abilities, and Perception of Difficulty on Eye-Tracking Measures When Solving a Context-Based Problem with Submicroscopic Representation

  • Chapter
  • First Online:
Applying Bio-Measurements Methodologies in Science Education Research

Abstract

Science and technology continue to develop rapidly, which leads to the need for all-encompassing science education, starting in the early years (Lloyd et al., 1998; Millar, 2006). All students should benefit from the science education provided, which includes an understanding of the scientific dimension of phenomena and events, critical recognition of the possibilities and limitations of science, its role in society and its contribution to citizenship, as well as the development of critical thinking, oral communication, and writing skills (BSCS, 2008; ICSU, 2011; Vieira & Tenreiro-Vieira, 2014). In addition, Harlen (2010) suggested that science education should enable everyone to make informed choices and take appropriate action that will affect their well-being and the well-being of society and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrzejewska, M., & Stolińska, A. (2016). Comparing the difficulty of tasks using eye tracking combined with subjective and behavioural criteria. Journal of Eye Movement Research, 9(3), 1–16.

    Article  Google Scholar 

  • Bačnik, A., Bukovec, N., Poberžnik, A., Požek Novak, T., Keuc Z., Popič, H., & Vrtačnik, M. (2009). Učni načrt, Program srednja šola, Kemija: Gimnazija: klasična, strokovna gimnazija [Curriculum, program of secondary school, chemistry: Gymnasium: Classical, professional gymnasium]. Ljubljana: National Education Institute Slovenia.

    Google Scholar 

  • Bačnik, A., Bukovec, N., Vrtačnik, M., Poberžnik, A., Križaj, M., Stefanovik, V., Sotlar, K., Dražumerič, S., & Preskar, S. (2011). Učni načrt, Program osnovna šola, Kemija [Curriculum, program of primary school, chemistry]. Ljubljana: national education institute Slovenia.

    Google Scholar 

  • Balon, A., Gostinčar Blagotinšek, A., Papotnik, A., Skribe Dimec, D., & Vodopivec, I. (2011). Učni načrt, Program osnovna šola, Naravoslovje in tehnika [Curriculum, program of primary school, science and technology]. Ljubljana: National Education Institute Slovenia.

    Google Scholar 

  • Barnea, N. (2000). Teaching and learning about chemistry and modelling with a computer managed modelling system. In J. K. Gilbert & C. Boulter (Eds.), Developing models in science education (pp. 307–324). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Bassok, M. (1990). Transfer of domain-specific problem solving procedures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(3), 522–533.

    Google Scholar 

  • Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In Handbook of Psychophysiology (2nd ed., pp. 142–162). New York: Cambridge University Press.

    Google Scholar 

  • Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45(4), 602–607.

    Article  Google Scholar 

  • BSCS. (2008). Scientists and science education. Retrieved from http://science.education.nih.gov/SciEdNation.nsf/EducationToday1.html.

  • Carmichael, A., Larson, A., Gire, E., Loschky, L., & Rebello, N. S. (2010). How does visual attention differ between experts and novices on physics problems? In AIP Physics Education Research Conference 2010 (pp. 93–96). Manhattan: Kansas State University.

    Google Scholar 

  • Cheng, M. M. W., & Gilbert, J. K. (2017). Modelling students’ visualisation of chemical reaction. International Journal Science Education, 39(9), 1173–1193.

    Article  Google Scholar 

  • Chittleborough, G. (2014). The development of theoretical frameworks for understanding the learning of chemistry. In I. Devetak & S. A. Glažar (Eds.), Learning with understanding in the chemistry classroom (pp. 25–40). London: Springer, Dordrecht Heidelberg New York.

    Chapter  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). Hillsdale, New York: Lawrence Erlbaum Associates.

    Google Scholar 

  • Devetak, I. (2012). Zagotavljanje kakovostnega znanja naravoslovja s pomočjo submikroreprezentacij, Analiza ključnih dejavnikov zagotavljanja kakovosti znanja v vzgojno-izobraževalnem sistemu [The analysis of the key factors in ensuring the quality of knowledge in educational system]. Ljubljana: Faculty of education, University of Ljubljana.

    Google Scholar 

  • Devetak, I., & Glažar, S. A. (2010). The influence of 16-year-old students’ gender, mental abilities, and motivation on their reading and drawing submicro representations achievements. International Journal of Science Education, 32(12), 1561–1593.

    Article  Google Scholar 

  • Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics—Physics Education Research, 10(2), 1–58.

    Article  Google Scholar 

  • Exerciseer, R., & Dalton, R. (2006). Research into practice: Visualisation of the molecular word using animations. Chemistry Education Research and Practice, 7(2), 141–159.

    Article  Google Scholar 

  • Ferk Savec, V., Hrast, Š., Devetak, I., & Torkar, G. (2016). Beyond the use of an explanatory key accompanying submicroscopic representations. Acta Chimica Slovenica, 63(4), 864–873.

    Article  Google Scholar 

  • Gegenfurtner, A., Lehtinen, E., & Saljo, R. (2011). Expertise differences in the comprehension of visualisations: A meta-analysis of the eye-tracking research in professional domains. Educational Psychology Review, 23(2), 523–552.

    Article  Google Scholar 

  • Gilbert, J. K. (2005). Visualisation: A metacognitive skill in science and science education. In J. K. Gilbert (Ed.), Visualisation in science education (pp. 9–27). Dordrecht: Kluwer Academic Press.

    Chapter  Google Scholar 

  • Graesser, A. C., Lu, S., Olde, B. S., Cooper-Pye, E., & Whitten, S. (2005). Question asking and eye tracking during cognitive disequilibrium: Comprehending illustrated texts on devices when the devices break down. Memory and Cognition, 33(7), 1235–1247.

    Article  Google Scholar 

  • Green, H. J., Lemaire, P., & Dufau, S. (2007). Eye movement correlates of younger and older adults’ strategies addition. Acta Psychologica, 125(12), 257–278.

    Article  Google Scholar 

  • Han, J., Chen, L., Fu, Z., Fritchman, J., & Bao, L. (2017). Eye-tracking of visual attention in web-based assessment using the force concept inventory. European Journal of Physics, 38(4), 1–16.

    Article  Google Scholar 

  • Harlen, W. (Ed.). (2010). Principles and big ideas of science education. Hatfield, England: Association for Science Education.

    Google Scholar 

  • Havanki, K. L., & VandenPlas, J. R. (2014). Eye tracking methodology for chemistry education research. In D. M. Bunce & R. S. Cole (Eds.), Tools of chemistry education research (pp. 191–218). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Hegarty, M. (1992). The mechanics of comprehension and comprehension of mechanics. In K. Rayner (Ed.), Eye movements and visual cognition (pp. 428–443). New York: Springer-Verlag.

    Google Scholar 

  • Hoffman, A. B., & Rehder, B. (2010). The costs of supervised classification: The effect of learning task on conceptual flexibility. Journal of Experimental Psychology, 139(2), 319–340.

    Article  Google Scholar 

  • Hyönä, J., Lorch, R. F., & Kaakinen, J. K. (2002). Individual differences in reading to summarise expository text: Evidence from eye fixation patterns. Journal of Education Psychology, 94(1), 44–55.

    Article  Google Scholar 

  • International Council for Science. (2011). Report of the ICSU ad-hoc review panel on science. Paris, France: Author. Retrieved from http://www.icsu.org/publications/reports-and-reviews/external-review-of-icsu.

  • Johnstone, A. H. (1982). Macro- and micro-chemistry. School Science Review, 64(227), 377–379.

    Google Scholar 

  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83.

    Article  Google Scholar 

  • Johnstone, A. H. (2001). Teaching of chemistry-logical or psychological? Chemistry Education Research and Practice, 1(1), 9–15.

    Article  Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87(4), 329–354.

    Article  Google Scholar 

  • Just, M. A., Carpenter, P. A., & Miyake, A. (2003). Neuroindices of cognitive workload: Neuroimaging, pupillometric and event-related potential studies of brain work. Theoretical Issues in Ergonomics Science, 4(1), 56–88.

    Article  Google Scholar 

  • Karch, J. M. (2018). Beyond gaze data: Pupillometry as an additional data source in eye tracking. In J. R. VandenPlas, S. J. R. Hansen, & S. Cullipher (Eds.), Eye tracking for the chemistry education researcher (pp. 145–163). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Kautz, C. H., Heron, P. R. L., Shaffer, P. S., & McDermott, L. C. (2005). Student understanding of the ideal gas law, Part II: A microscopic perspective. American Journal of Physics, 73(11), 1064–1071.

    Article  Google Scholar 

  • Klein, P., Lichtenberger, A., Küchemann, S., Becker, S., Kekule, M., Viiri, J., Baadte, C., Vaterlaus, A., & Kuhn, J. (2020). Visual attention while solving the test of understanding graphs in kinematics: An eye-tracking analysis. European Journal of Physics, 41(2), 1–17.

    Google Scholar 

  • Kohl, P. B., & Finkelstein, N. D. (2005). Student representational competence and self-assessment when solving problems. Physical Review Special Topics—Physics Education Research, 1(1), 1–11.

    Google Scholar 

  • Korbach, A., Brünken, R., & Park, B. (2018). Differentiating different types of cognitive load: A comparison of different measures. Educational Psychology Review, 30(4), 503–529.

    Article  Google Scholar 

  • Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualisation in physics problem solving. Cognitive Science, 31(4), 549–579.

    Article  Google Scholar 

  • Lang, F., Kammerer, Y., Oschatz, K., Stürmer, K., & Gerjets, P. (2020). The role of beliefs regarding the uncertainty of knowledge and mental effort as indicated by pupil dilation in evaluating scientific controversies. International Journal of Science Education, 42(3), 350–371.

    Article  Google Scholar 

  • Levy, S. T., & Wilinsky, U. (2009). Crossing levels and representations: The connected chemistry (CC1) curriculum. Journal of Science Education and Technology, 18(3), 224–242.

    Article  Google Scholar 

  • Lewis, J., & Leach, J. (2006). Discussion of socio-scientific issues: The role of science knowledge. International Journal of Science Education, 28(11), 1267–1287.

    Article  Google Scholar 

  • Lin, Y. I., Son, J. Y., & Rudd, J. A. (2016). Asymmetric translation between multiple representations in chemistry. International Journal of Science Education, 38(4), 644–662.

    Article  Google Scholar 

  • Lloyd, J. K., Smith, R. G., Fay, C. L., Khang, G. N., Wah, L. L. K., & Sai, C. L. (1998). Subject knowledge for science teaching at primary level: A comparison of pre-service teachers in England and Singapore. International Journal of Science Education, 20(5), 521–532.

    Article  Google Scholar 

  • Madsen, A. M., Larson, A. M., Loschky, L. C., & Rebello, N. S. (2012). Differences in visual attention betweenthose who correctly and incorrectly answer physics problems. Physical Review Special Topics—Physics Education Research, 8(1), 1–14.

    Google Scholar 

  • Maloney, D. (2011). An overview of physics education: Research on problem solving. Research in Problem Solving, 2(1), 1–31.

    Google Scholar 

  • Meltzer, D. E. (2005). Relation between students’ problem-solving performance and representational format. American Journal of Physics, 73(5), 463–478.

    Article  Google Scholar 

  • Millar, R. (2006). Twenty first century science: Insights from the design and implementation of a scientific literacy approach in school science. International Journal of Science Education, 28(13), 1499–1521.

    Article  Google Scholar 

  • Mozaffari, S., Klein, P., Bukhari, S. S., Kuhn, J., & Dengel, A. (2016). Entropy based transition analysis of eye movement on physics representational competence. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 1027–1034).

    Google Scholar 

  • Mueller, S. T., & Piper, B. J. (2014). The psychology experiment building language (PEBL) and PEBL test battery. Journal of Neuroscience Methods, 222(14), 250–259.

    Article  Google Scholar 

  • Nunan, D., & Keobke, K. (1995). Task difficulty from the learner’s perspective: Perceptions and reality. Hong Kong Papers in Linguistics and Language Teaching, 18(3), 1–12.

    Google Scholar 

  • Pallant, J. (2011). SPSS survival manual: A step by step guide to data analysis using SPSS (4th ed.). Crows Nest: Allen & Unwin.

    Google Scholar 

  • Pavlin, J., Glažar, S. A., Slapničar, M., & Devetak, I. (2019). The impact of studentsʼ educational background, interest in learning, formal reasoning and visualisation abilities on gas context-based exercises achievements with submicro-animations. Chemistry Education Research and Practice, 20(3), 633–649.

    Article  Google Scholar 

  • Phillips, L. M., Norris, S. P., & Macnab, J. S. (2010). Visualisation in mathematics, reading and science education. Dordrecht: Springer.

    Book  Google Scholar 

  • Planinšič, G., Belina, R., Kukman, I., & Cvahte, M. (2009). Učni načrt, Program srednja šola, Fizika: gimnazija: klasična, strokovna gimnazija [Curriculum, Program of secondary school, Physics: Gymnasium: Classical, professional gymnasium]. Ljubljana: National education institute Slovenia.

    Google Scholar 

  • Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin Journal, 124(3), 372–422.

    Article  Google Scholar 

  • Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology, 62(8), 1457–1506.

    Article  Google Scholar 

  • Skvarč, M., Glažar, S. A., Marhl, M., Skribe Dimec, D., Zupan, A., Cvahte, M., Gričnik, K., Volčini, D., Sabolič, G., & Šorgo, A. (2011). Učni načrt, Program osnovna šola, Naravoslovje [Curriculum, program of primary school, science]. Ljubljana: National education institute Slovenia.

    Google Scholar 

  • Slapničar, M., Devetak, I., Glažar, S. A., & Pavlin, J. (2017). Identification of the Understanding of the states of water and air among Slovenian students aged 12, 14 and 16 years through solving authentic exercises. Journal of Baltic Science Education, 16(3), 308–323.

    Article  Google Scholar 

  • Slapničar, M., Tompa, V., Glažar, S. A., & Devetak, I. (2018). Fourteen-year-old students’ misconceptions regarding the sub-micro and symbolic levels of specific chemical concepts. Journal of Baltic Science Education, 17(4), 620–632.

    Article  Google Scholar 

  • Smith, D., Mestre, J. P., & Ross, B. H. (2010). Eye-gaze patterns as students study worked out examples in mechanics. Physical Review Special Topics—Physics Education Research, 6(1): 1–9.

    Google Scholar 

  • Stuart, S., Hickey, A., Vitório, R., Welman, K. E., Foo, S., Keen, D., & Godfrey, A. (2019). Eye-tracker algorithms to detect saccades during static and dynamic tasks: A structured review. Physiological Measurement, 40(2), 1–26.

    Google Scholar 

  • Susac, A., Bubic, A., Kaponja, J., Planinic, M., & Palmovic, M. (2014). Eye movement reveal students’ strategies in simple equation solving. International Journal of Science and Mathematics Education, 12(3), 555–577.

    Article  Google Scholar 

  • Taber, K. S. (2013). Revisiting the chemistry triplet: Drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156–168.

    Article  Google Scholar 

  • Tai, R. H., Loehr, J. F., & Brigham, F. J. (2006). An exploration of the use of eye-gaze tracking to study problem-solving on standardised science assessments. International Journal of Research and Method in Education, 29(3), 185–208.

    Article  Google Scholar 

  • Tobin, K., & Capie, W. (1984). The test of logical thinking. International Journal of Science and Mathematics Education Southeast Asia, 7(1), 5–9.

    Google Scholar 

  • Topczewski, J. J., Topczewski, A. M., Tang, H., Kendhammer, L. K., & Pienta, N. J. (2016). NMR spectra through the eyes of a student: Eye tracking applied to NMR items. Journal of Chemical Education, 94(1), 29–37.

    Article  Google Scholar 

  • Torkar, G., Veldin, M., Glažar, S. A., & Podlesek, A. (2018). Why do plants wilt? Investigating studentsʼ understanding of water balance in plants with external representations at the macroscopic and submicroscopic levels. Eurasia Journal of Mathematic Science Technology and Education, 14(6), 2265–2276.

    Google Scholar 

  • Tsai, M. J., Hou, H. T., Lai, M. L., Liu, W. L., & Yang, F. Y. (2012). Visual attention for solving multiple-choice science problem: An eye-tacking analysis. Computer and Education, 58(6), 375–385.

    Article  Google Scholar 

  • Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2005). Uncovering expertise-related differences in trouble-shooting performance: Combining eye movement data and concurrent verbal protocol data. Applied Cognitive Psychology, 19(2), 205–221.

    Article  Google Scholar 

  • Verovnik, I., Bajc, J., Beznec, B., Božič, S., Brdar, U. V., Cvahte, M., Gerlič, I., & Munih, S. (2011). Učni načrt, Program osnovna šola, Fizika [Curriculum, program of primary school, physics]. Ljubljana: National education institute Slovenia.

    Google Scholar 

  • Vieira, R. M., & Tenreiro-Vieira, C. (2014). Fostering scientific literacy and critical thinking in elementary science education. International Journal of Science and Mathematics Education, 14(4), 659–680.

    Article  Google Scholar 

  • Viiri, J., Kekule, M., Isoniemi, J., & Hautala, J. (2017). Eye-tracking the effects of representation on students’ problem solving approaches. Paper presented at the Proceedings of the Annual FMSERA Symposium 2016 (pp. 88–98). Joensuu: FMSERA.

    Google Scholar 

  • West, J. M., Haake, A. R., Rozanski, E. P., & Karn, K. S. (2006). EyePatterns: Software for identifying patterns and similarities across fixation sequences. Paper presented at the Proceedings of the 2006 Symposium on Eye Tracking Research and Applications (pp. 149–154). New York: ACM Press.

    Google Scholar 

  • Wu, H., & Shah, P. (2004). Exploring visuospatial thinking in learning. Science Education, 88(3), 465–492.

    Article  Google Scholar 

  • Yen, M. H., & Yang, F. Y. (2016). Methodology and application of eye-tracking techniques in science education. In M. H. Chiu (Ed.), Science education research and practices in Taiwan (pp. 249–277). Springer: Singapore.

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by the project ‘Explaining Effective and Efficient Problem Solving of the Triplet Relationship in Science Concepts Representations’ (J5-6814), financed by the Slovenian Research Agency (ARRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerneja Pavlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pavlin, J., Slapničar, M. (2021). The Impact of Students’ Educational Background, Formal Reasoning, Visualisation Abilities, and Perception of Difficulty on Eye-Tracking Measures When Solving a Context-Based Problem with Submicroscopic Representation. In: Devetak, I., Glažar, S.A. (eds) Applying Bio-Measurements Methodologies in Science Education Research. Springer, Cham. https://doi.org/10.1007/978-3-030-71535-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71535-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71534-2

  • Online ISBN: 978-3-030-71535-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics