Skip to main content

Cognitive Processes and Eye-Tracking Methodology

  • Chapter
  • First Online:
Applying Bio-Measurements Methodologies in Science Education Research

Abstract

Students’ understanding of scientific concepts can be supported by using representations of the concepts at different levels (macroscopic, submicroscopic and symbolic). However, different students may not use the visual and verbal information presented at the three levels with equal effectiveness. In addition to prior knowledge, problem-solving performance in science may be influenced by several cognitive factors presented in this chapter: verbal and reasoning abilities, visuospatial abilities, working memory and executive functions. Behavioural data, self-reports and eye movements can be used to examine the role of these cognitive processes in problem-solving. This chapter presents some eye-movement features commonly used in the study of cognitive processes (the location of fixations, the total number of fixations, the proportion of total duration of fixations and the average duration of fixations in specific areas of interest, the number of revisits to these areas, the number of blinks, fixation sequences and pupil size). These features indicate the target of student attention, reflecting the amount of cognitive resources devoted to information processing and problem-solving strategies. A case study is presented in which eye movements were observed as a student was solving an authentic science problem to illustrate the use of eye-tracking methodology in investigating students’ understanding of the macroscopic and submicroscopic levels of representations of ice melting. Verbal responses and eye movements of two seventh grade primary school students with similar prior knowledge of aggregate states but different cognitive abilities were compared to demonstrate that differences in students' cognitive processes might be related to different eye-movement features, such as total fixation time in different areas, eye-movement path, number of blinks and pupil dilation. The limitations and practical implications of using eye-tracking methodology to infer cognitive processes used to solve a particular task are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the Slovenian Research Agency project J5-6814, Explaining Effective and Efficient Problem Solving of the Triplet Relationship in Science Concepts Representations, the students were confronted with 10 authentic science problems. Only one of the problems was selected to be presented in our case study.

  2. 2.

    The score was calculated as a weighted average (the weights are given in brackets) of the standardized—within the sample—scores on the Digit Span—forward test (1), Digit Span—backward test (1), the visual search score in the PEBL ptrails test (1), the switching cost in the PEBL ptrails test (1), the letter fluency test (1), the APM test (1) and the TOLT (3).

References

  • Ackerman, P. L., Kanfer, R., & Beier, M. E. (2013). Trait complex, cognitive ability, and domain knowledge predictors of baccalaureate success, STEM persistence, and gender differences. Journal of Educational Psychology, 105(3), 911.

    Article  Google Scholar 

  • Arnett, J. A., & Labovitz, S. S. (1995). Effect of physical layout in performance of the Trail Making Test. Psychological Assessment, 7(2), 220–221.

    Article  Google Scholar 

  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Psychology of learning and motivation (Vol. 2, pp. 89–195). Academic Press.

    Google Scholar 

  • Baddeley, A. (1996a). Exploring the central executive. The Quarterly Journal of Experimental Psychology Section A, 49(1), 5–28.

    Article  Google Scholar 

  • Baddeley, A. (1996b). The fractionation of working memory. Proceedings of the National Academy of Sciences, 93(24), 13468–13472.

    Article  Google Scholar 

  • Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in cognitive sciences, 4(11), 417–423.

    Article  Google Scholar 

  • Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29.

    Article  Google Scholar 

  • Bahar, A., & Maker, C. J. (2015). Cognitive backgrounds of problem solving: A comparison of open-ended vs. closed mathematics problems. Eurasia Journal of Mathematics, Science and Technology Education, 11(6), 1531–1546.

    Google Scholar 

  • Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91(2), 276.

    Article  Google Scholar 

  • Berkowitz, M., & Stern, E. (2018). Which cognitive abilities make the difference? Predicting academic achievements in advanced STEM studies. Journal of Intelligence, 6(4), 48. https://doi.org/10.3390/jintelligence6040048.

    Article  Google Scholar 

  • Binder, T., Sandmann, A., Sures, B., Friege, G., Theyssen, H., & Schmiemann, P. (2019). Assessing prior knowledge types as predictors of academic achievement in the introductory phase of biology and physics study programmes using logistic regression. International Journal of STEM Education, 6(1), 33.

    Article  Google Scholar 

  • Biswas, P., Dutt, V., & Langdon, P. (2016). Comparing ocular parameters for cognitive load measurement in eye-gaze-controlled interfaces for automotive and desktop computing environments. International Journal of Human-Computer Interaction, 32(1), 23–38.

    Article  Google Scholar 

  • Bors, D. A., & Stokes, T. L. (1998). Raven’s Advanced Progressive Matrices: Norms for first-year university students and the development of a short form. Educational and Psychological Measurement, 58(3), 382–398.

    Article  Google Scholar 

  • Brookings, J. B., Wilson, G. F., & Swain, C. R. (1996). Psychophysiological responses to changes in workload during simulated air traffic control. Biological Psychology, 42(3), 361–377.

    Article  Google Scholar 

  • Case, R., Kurland, M. D., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33, 386–404.

    Article  Google Scholar 

  • Chanijani, S. S. M., Klein, P., Al-Naser, M., Bukhari, S. S., Kuhn, J., & Dengel, A. (2016, September). A study on representational competence in physics using mobile eye tracking systems. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct (pp. 1029–1032).

    Google Scholar 

  • Chen, S. (2014). Cognitive load measurement from eye activity: acquisition, efficacy, and real-time system design. Ph.D. thesis, University of New South Wales. http://unsworks.unsw.edu.au/fapi/datastream/unsworks:12261/SOURCE02?view=true.

  • Chen, S., & Epps, J. (2014). Using task-induced pupil diameter and blink rate to infer cognitive load. Human-Computer Interaction, 29(4), 390–413.

    Article  Google Scholar 

  • Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769–786.

    Article  Google Scholar 

  • Cornoldi, C., & Giofrè, D. (2014). The crucial role of working memory in intellectual functioning. European Psychologist, 19(4), 260–268.

    Article  Google Scholar 

  • Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466.

    Article  Google Scholar 

  • Della Sala, S., Gray, C., Baddeley, A., Allamano, N., & Wilson, L. (1999). Pattern span: a tool for unwelding visuo–spatial memory. Neuropsychologia, 37(10), 1189–1199.

    Article  Google Scholar 

  • Dimotakis, N., Ilies, R., & Judge, T. A. (2013). Experience sampling methodology. In J. M. Cortina & R. S. Landis (Eds.), Modern research methods for the study of behavior in organizations (pp. 345–374). Routledge.

    Google Scholar 

  • Dodge, R., & Cline, T. S. (1901). The angle velocity of eye movements. Psychological Review, 8, 145–157.

    Article  Google Scholar 

  • Duchowski, A. T. (2002). A breadth-first survey of eye-tracking applications. Behavior Research Methods, Instruments, & Computers, 34(4), 455–470.

    Google Scholar 

  • Eccles, D. W., & Arsal, G. (2017). The think aloud method: what is it and how do I use it? Qualitative Research in Sport, Exercise and Health, 9(4), 514–531.

    Article  Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: A latent variable approach. Journal of Experimental Psychology: General, 128, 309–331.

    Article  Google Scholar 

  • Eysenck, M. W., & Keane, M. T. (2015). Cognitive psychology: A student’s handbook. Psychology Press.

    Google Scholar 

  • Ferk Savec, V., Hrast, Ĺ ., Devetak, I., & Torkar, G. (2016). Beyond the use of an explanatory key accompanying submicroscopic representations. Acta Chimica Slovenica, 63(4), 864–873.

    Article  Google Scholar 

  • GarcĂ­a, O., LĂłpez, F., Icaran, E., & Burgos, S. (2014). Relationship between general intelligence, competences and academic achievement among university students. Personality and Individual Differences, 60, S67.

    Article  Google Scholar 

  • Gegenfurtner, A., Lehtinen, E., & Säljö, R. (2011). Expertise differences in the comprehension of visualizations: A meta-analysis of eye-tracking research in professional domains. Educational Psychology Review, 23, 523–552. https://doi.org/10.1007/s10648-011-9174-7.

    Article  Google Scholar 

  • Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, N. & Wichansky, A. M. (2002). Eye tracking in Web search tasks: Design implications. Proceedings of the Eye Tracking Research & Application Symposium, 51–58. https://doi.org/10.1145/507072.507082.

  • Green, H. J., Lemaire, P., & Dufau, S. (2007). Eye movement correlates of younger and older adults’ strategies for complex addition. Acta Psychologica, 125, 257–278.

    Article  Google Scholar 

  • Haidar, A. H., & Abraham, M. R. (1991). A comparison of applied and theoretical knowledge of concepts based on the particulate nature of matter. Journal of Research in Science Teaching, 28(10), 919–938.

    Article  Google Scholar 

  • Hartmann, M. (2015). Numbers in the eye of the beholder: What do eye movements reveal about numerical cognition? Cognitive Processing, 16(1), 245–248. https://doi.org/10.1007/s10339-015-0716-7.

    Article  Google Scholar 

  • Hoeks, B., & Levelt, W. J. (1993). Pupillary dilation as a measure of attention: A quantitative system analysis. Behavior Research Methods, Instruments, & Computers, 25(1), 16–26.

    Google Scholar 

  • Hurks, P. P. M., Vles, J. S. H., Hendriksen, J. G. M., Kalff, A. C., Feron, F. J. M., Kroes, M., … & Jolles, J. (2006). Semantic category fluency versus initial letter fluency over 60 seconds as a measure of automatic and controlled processing in healthy school-aged children. Journal of Clinical and Experimental Neuropsychology, 28(5), 684–695.

    Google Scholar 

  • Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures. New York: Basic Books.

    Book  Google Scholar 

  • Iqbal, S. T., Adamczyk, P. D., Zheng, X. S., & Bailey, B. P. (2005, April). Towards an index of opportunity: understanding changes in mental workload during task execution. In W. Kellogg & S. Zhai (Eds.), Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 311–320). Association for Computing Machinery.

    Google Scholar 

  • Jacob, R. J. K., & Karn, K. S. (2003). Eye tracking in human–computer interaction and usability research: Ready to deliver the promises. The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research, 573–605.

    Google Scholar 

  • Javal, E. (1878). Essai sur la physiologie de la lecture. Annales d'Ocilistique, 80, 97–117.

    Google Scholar 

  • Kaufman, S. B., DeYoung, C. G., Reis, D. L., & Gray, J. R. (2011). General intelligence predicts reasoning ability even for evolutionarily familiar content. Intelligence, 39(5), 311–322.

    Article  Google Scholar 

  • Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and technical innovation: Spatial ability’s unique role. Psychological Science, 24(9), 1831–1836.

    Article  Google Scholar 

  • König, P., Wilming, N., Kietzmann, T. C., OssandĂłn, J. P., Onat, S., Ehinger, B. V., Gameiro, R. R., & Kaspar, K. (2016). Eye movements as a window to cognitive processes. Journal of Eye Movement Research, 9(5), 1–16.

    Google Scholar 

  • Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(9), 949–968.

    Article  Google Scholar 

  • Krejtz, K., Duchowski, A. T., Niedzielska, A., Biele, C., & Krejtz, I. (2018). Eye tracking cognitive load using pupil diameter and microsaccades with fixed gaze. PloS one, 13(9).

    Google Scholar 

  • Kruger, P. B. (1980). The effect of cognitive demand on accommodation. American Journal of Optometry and Physiological Optics, 57(7), 440–445.

    Article  Google Scholar 

  • Lai, M. L., Tsai, M. J., Yang, F. Y., Hsu, C. Y., Liu, T. C., Lee, S. W. Y., Lee, M. H., Chiou, G. L., Liang, J. C., & Tsai, C. C. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational Research Review, 10, 90–115.

    Google Scholar 

  • Laukkonen, R. E., & Tangen, J. M. (2018). How to detect insight moments in problem solving experiments. Frontiers in psychology, 9, 282.

    Article  Google Scholar 

  • Lawson, A. E., & Renner, J. W. (1975). Relationships of science subject matter and developmental levels of learners. Journal of Research in Science Teaching, 12(4), 347–358.

    Article  Google Scholar 

  • Lin, T., Imamiya, A., & Mao, X. (2008). Using multiple data sources to get closer insights into user cost and task performance. Interacting with Computers, 20(3), 364–374.

    Google Scholar 

  • Logie, R. H. (1995). Visuo-spatial working memory. Hove: Erlbaum.

    Google Scholar 

  • Lombardi, B. M. M., & Oblinger, D. G. (2007). Authentic learning for the 21st century: An overview. Learning, 1, 1–7.

    Google Scholar 

  • Madsen, A.M., Larson, A.M., Loschky, L.C., & Rebello, N. S. (2012). Differences in visual attention between those who correctly and incorrectly answer physics problems. Physical Review Special Topics—Physics Education Research, 8(010122), 1–13. https://doi.org/10.1103/physrevstper.8.010122.

  • Majooni, A., Masood, M., & Akhavan, A. (2016). An eye tracking experiment on strategies to minimize the redundancy and split attention effects in scientific graphs and diagrams. In Advances in design for inclusion (pp. 529–540). Cham: Springer.

    Google Scholar 

  • Ma Oliva, J. (1999). Structural patterns in students’ conceptions in mechanics. International Journal of Science Education, 21(9), 903–920.

    Article  Google Scholar 

  • Meltzer, L. (2010). Promoting executive function in the classroom. Guilford Press.

    Google Scholar 

  • MihelÄŤiÄŤ, M., & Podlesek, A. (2017). The influence of proprioception on reading performance. Clinical and Experimental Optometry, 100(2), 138–143.

    Article  Google Scholar 

  • Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 8–14. https://doi.org/10.1177/0963721411429458.

    Article  Google Scholar 

  • Moeller, K., Klein, E., & Nuerk, H. C. (2011). Three processes underlying the carry effect in addition–evidence from eye tracking. British Journal of Psychology, 102, 623–645. https://doi.org/10.1111/j.2044-8295.2011.02034.x.

    Article  Google Scholar 

  • Mueller, S. T. (2012). The psychology experiment building language, Version 0.13. Retrieved from http://pebl.sourceforge.net.

  • Mueller, S. T., & Piper, B. J. (2014). The psychology experiment building language (PEBL) and PEBL test battery. Journal of Neuroscience Methods, 222, 250–259.

    Article  Google Scholar 

  • Muhamad, S., Harun, J., Surif, J., & Abd Halim, N. D. (2016). Authentic chemistry problem solving competency for open-ended problems in learning electrolysis: Preliminary study. Journal Pendidikan Teknik Dan Vokasional Malaysia, 1(1), 365–373. https://people.utm.my/noordayana/files/2012/10/fullpaper-suraiya-icehots.pdf.

  • Pomplun, M., & Sunkara, S. (2003). Pupil dilation as an indicator of cognitive workload in human–computer interaction. Human-Centred Computing: Cognitive, Social and Ergonomic Aspects, 3, 542–546.

    Google Scholar 

  • Rausch, A., Kögler, K., & Seifried, J. (2019). Validation of Embedded Experience Sampling (EES) for measuring non-cognitive facets of problem-solving competence in scenario-based assessments. Frontiers in psychology, 10.

    Google Scholar 

  • Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for Raven’s progressive matrices and vocabulary scales. Oxford: Oxford Psychologists Press.

    Google Scholar 

  • Raven, J., Raven, J. C., Court, J. H., & JuĹľniÄŤ Sotlar, M. (1999). PriroÄŤnik za Ravnove progresivne matrice in besedne lestvice. Zahtevne progresivne matrice : z normami za odrasle in novimi normami za vrsto nacionalnih skupin [Manual for Raven’s Progressive Matrices and vocabulary scales. Advanced Progressive Matrices with norms for adults and the new norms for several national groups]. Ljubljana: Center za psihodiagnostiÄŤna sredstva.

    Google Scholar 

  • Reitan, R. M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8(3), 271–276.

    Article  Google Scholar 

  • Remšak, T. (2013). Razvoj testa ÄŤrkovne fluentnosti [Development of a test of letter fluency]. Unpublished graduate thesis, University of Ljubljana, Slovenia.

    Google Scholar 

  • Rosander, P., Bäckström, M., & Stenberg, G. (2011). Personality traits and general intelligence as predictors of academic performance: A structural equation modelling approach. Learning and individual differences, 21(5), 590–596.

    Article  Google Scholar 

  • Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach. Journal of Experimental Psychology: General, 125, 4–27.

    Article  Google Scholar 

  • Shao, Z., Janse, E., Visser, K., & Meyer, A. S. (2014). What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Frontiers in psychology, 5, 772. https://doi.org/10.3389/fpsyg.2014.00772.

    Article  Google Scholar 

  • SchĂĽler, A., Scheiter, K., & van Genuchten, E. (2011). The role of working memory in multimedia instruction: Is working memory working during learning from text and pictures? Educational Psychology Review, 23(3), 389–411.

    Article  Google Scholar 

  • Scholz, A., von Helversen, B., & Rieskamp, J. (2015). Eye movements reveal memory processes during similarity-and rule-based decision making. Cognition, 136, 228–246.

    Google Scholar 

  • She, H. C., Cheng, M. T., Li, T. W., Wang, C. Y., Chiu, H. T., Lee, P. Z., Chou, W. C., & Chuang, M. H. (2012). Web-based undergraduate chemistry problem-solving: The interplay of task performance, domain knowledge and web-searching strategies. Computers & Education, 59(2), 750–761.

    Google Scholar 

  • Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604–614.

    Article  Google Scholar 

  • Stern, J. A., Boyer, D., & Schroeder, D. J. (1994). Blink rate as a measure of fatigue: A review. Human Factor, 36(2), 285–297.

    Article  Google Scholar 

  • Susac, A., Bubic, A., Kaponja, J., Planinic, M., & Palmovic, M. (2014). Eye movement reveal students’ strategies in simple equation solving. International Journal of Science and Mathematics Education, 12(3), 555–577. https://doi.org/10.1007/s10763-014-9514-4.

    Article  Google Scholar 

  • Taconis, R., Ferguson-Hessler, M. G., & Broekkamp, H. (2001). Teaching science problem solving: An overview of experimental work. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 38(4), 442–468.

    Article  Google Scholar 

  • Thomas, L. E., & Lleras, A. (2009). Covert shifts of attention function as an implicit aid to insight. Cognition, 111(2), 168–174.

    Article  Google Scholar 

  • Tobin, K., & Capie, W. (1984). The Test of Logical Thinking. Journal of Science and Mathematics Education in Southeast Asia, 7(1), 5–9.

    Google Scholar 

  • Tobin, K. G., & Capie, W. (1981). The development and validation of a group test of logical thinking. Educational and Psychological Measurement, 41(2), 413–423.

    Google Scholar 

  • Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353–1368.

    Article  Google Scholar 

  • Trexler Holland, C. (1995). The effects of formal reasoning ability, spatial ability, and type of instruction on chemistry achievement. Unpublished doctoral dissertation, University of Florida. https://archive.org/details/effectsofformalr00holl/mode/2up.

  • Trifone, J. D. (1987). The Test of Logical Thinking: Applications for teaching and placing science students. The American Biology Teacher, 411–416.

    Google Scholar 

  • Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127–154.

    Article  Google Scholar 

  • Vitu, F., & McConkie, G. W. (2000). Regressive saccades and word perception in adult reading. In A. Kennedy, R. Radach, D. Heller, & J. Pynte (Eds.), Reading as a perceptual process (pp. 301–326). Elsevier.

    Google Scholar 

  • Vogels, J., Demberg, V., & Kray, J. (2018). The index of cognitive activity as a measure of cognitive processing load in dual task settings. Frontiers in Psychology, 9, 2276.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (research project No. J5-6814, Explaining Effective and Efficient Problem Solving of the Triplet Relationship in Science Concepts Representations, and research core funding No. P5-0110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Podlesek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Podlesek, A., Veldin, M., Peklaj, C., Svetina, M. (2021). Cognitive Processes and Eye-Tracking Methodology. In: Devetak, I., GlaĹľar, S.A. (eds) Applying Bio-Measurements Methodologies in Science Education Research. Springer, Cham. https://doi.org/10.1007/978-3-030-71535-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71535-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71534-2

  • Online ISBN: 978-3-030-71535-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics