Skip to main content

Ab Initio Computational Approach for Nanophotonics Based on Time-Dependent Density Functional Theory

  • Chapter
  • First Online:
Progress in Nanophotonics 6

Part of the book series: Nano-Optics and Nanophotonics ((NON))

  • 485 Accesses

Abstract

We present theoretical and computational approaches to describe ultrafast and nonlinear optical responses in nano-materials based on ab initio time-dependent density functional theory. The method is applicable to a wide variety of phenomena in nanophotonics, including nonlinear optical responses of thin films and metasurfaces, and coherent phonon generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C.A. Ullrich, Time-Dependent Density-Functional Theory Concepts and Applications (Oxford University Press, 2012)

    Google Scholar 

  2. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  3. K. Cho, Optical Response of Nanostructures: Microscopic Nonlocal Theory. Springer Series in Solid-State Sciences (2003)

    Google Scholar 

  4. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)

    Article  ADS  Google Scholar 

  5. K. Yabana, G.F. Bertsch, Phys. Rev. B 54, 4484 (1996)

    Article  ADS  Google Scholar 

  6. G.F. Bertsch, J.-I. Iwata, A. Rubio, K. Yabana, Phys. Rev. B 62, 7998 (2000)

    Article  ADS  Google Scholar 

  7. K. Yabana, G.F. Bertsch, Int. J. Quantum Chem. 75, 55 (1999)

    Article  Google Scholar 

  8. T. Nakatsukasa, K. Yabana, J. Chem. Phys. 114, 2550 (2001)

    Article  ADS  Google Scholar 

  9. J.-I. Iwata, K. Yabana, G.F. Bertsch, J. Chem. Phys. 115, 8773 (2001)

    Article  ADS  Google Scholar 

  10. K. Nobusada, K. Yabana, Phys. Rev. A 70, 043411 (2004)

    Article  ADS  Google Scholar 

  11. Y. Kawashita, T. Nakatsukasa, K. Yabana, J. Phys. Cond. Matter 21, 064222 (2009)

    Article  ADS  Google Scholar 

  12. M. Uemoto, Y. Kuwabara, S.A. Sato, K. Yabana, J. Chem. Phys. 150, 094101 (2019)

    Article  ADS  Google Scholar 

  13. Y. Shinohara, K. Yabana, Y. Kawashita, J.-I. Iwata, T. Otobe, G.F. Bertsch, Phys. Rev. B 82, 155110 (2010)

    Article  ADS  Google Scholar 

  14. T. Otobe, M. Yamagiwa, J.-I. Iwata, K. Yabana, T. Nakatsukasa, G.F. Bertsch, Phys. Rev. B 77, 165104 (2008)

    Article  ADS  Google Scholar 

  15. T. Otobe, Phys. Rev. B 94, 235152 (2016)

    Article  ADS  Google Scholar 

  16. G. Wachter, C. Lemell, J. Burgdörfer, S.A. Sato, X.-M. Tong, K. Yabana, Phys. Rev. Lett. 113, 087401 (2014)

    Article  ADS  Google Scholar 

  17. K. Yabana, T. Sugiyama, Y. Shinohara, T. Otobe, G.F. Bertsch, Phys. Rev. B 85, 045134 (2012)

    Article  ADS  Google Scholar 

  18. M. Lucchini, S.A. Sato, A. Ludwig, J. Herrmann, M. Volkov, L. Kasmi, Y. Shinohara, K. Yabana, L. Gallmann, U. Keller, Science 353, 916 (2016)

    Article  ADS  Google Scholar 

  19. A. Sommer, E.M. Bothschafter, S.A. Sato, C. Jakubeit, T. Latka, O. Razskazovskaya, H. Fattahi, M. Jobst, W. Schweinberger, V. Shirvanyan, V.S. Yakovlev, R. Kienberger, K. Yabana, N. Karpowicz, M. Schultze, F. Krausz, Nature 534, 86 (2016)

    Article  ADS  Google Scholar 

  20. S.A. Sato, K. Yabana, Y. Shinohara, T. Otobe, K.-M. Lee, G.F. Bertsch, Phys. Rev. B 92, 205413 (2015)

    Article  ADS  Google Scholar 

  21. S. Yamada, M. Noda, K. Nobusada, K. Yabana, Phys. Rev. B 98, 245147 (2018)

    Article  ADS  Google Scholar 

  22. A. Yamada, K. Yabana, Phys. Rev. B 99, 245103 (2019)

    Article  ADS  Google Scholar 

  23. T. Takeuchi, M. Noda, K. Yabana, ACS Photon. 6, 2517 (2019)

    Article  Google Scholar 

  24. M. Uemoto, K. Yabana, S.A. Sato, Y. Hirokawa, T. Boku, EPJ Web of Conference 205, 04023 (2019)

    Article  Google Scholar 

  25. A. Yamada, K. Yabana, Euro. Phys. J. D 73, 87 (2019)

    Article  ADS  Google Scholar 

  26. N. Troullier, J.L Martins: Phys. Rev. B 43, 1993 (1991)

    Google Scholar 

  27. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  28. M. Noda, S.A. Sato, Y. Hirokawa, M. Uemoto, T. Takeuchi, S. Yamada, A. Yamada, Y. Shinohara, M. Yamaguchi, K. Iida, I. Floss, T. Otobe, K.-M. Lee, K. Ishimura, T. Boku, G.F. Bertsch, K. Nobusada, K. Yabana, Comput. Phys. Commun. 235, 356 (2019)

    Article  ADS  Google Scholar 

  29. S.A. Sato, Y. Taniguchi, Y. Shinohara, K. Yabana, J. Chem. Phys. 143, 224116 (2015)

    Article  ADS  Google Scholar 

  30. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)

    Google Scholar 

  31. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  32. R. Merlin, Solid State Comm. 102, 207 (1997)

    Article  ADS  Google Scholar 

  33. L. Dhar, J.A. Rogers, K.A. Nelson, Chem. Rev. 94, 157 (1994)

    Article  Google Scholar 

  34. M. Hase, M. Kitajima, J. Phys. Cond. Matter 22, 073201 (2010)

    Article  ADS  Google Scholar 

  35. A. Yamada, K. Yabana, Phys. Rev. B 101, 214313 (2020)

    Article  ADS  Google Scholar 

  36. K.G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, Y. Kayanuma, Phys. Rev. B 94, 024303 (2016)

    Article  ADS  Google Scholar 

  37. K. Mizoguchi, R. Morishita, and G. Oohata: Phys. Rev. Lett. textbf110, 077402 (2013)

    Google Scholar 

  38. J. Zuloaga, E. Prodan, P. Nordlander, Nano Lett. 9, 887 (2009)

    Article  ADS  Google Scholar 

  39. G. Aguirregabiria, D.C. Marinica, R. Esteban, A.K. Kazansky, J. Aizpurua, A.G. Borisov, Phys. Rev. B 97, 115430 (2018)

    Article  ADS  Google Scholar 

  40. J.A. Scholl, A. García-Etxarri, A.L. Koh, J.A. Dionne: Nano Lett. 13, 564 (2013)

    Google Scholar 

  41. D. Doyle, N. Charipar, C. Argyropoulos, S.A. Trammell, R. Nita, J. Naciri, A. Piqu, J.B. Herzog, J. Fontana, ACS Photonics 5, 1012 (2018)

    Article  Google Scholar 

  42. K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Nat. Commun. 2, 517 (2011)

    Article  ADS  Google Scholar 

  43. Y. Hirokawa, T. Boku, M. Uemoto, S.A. Sato, K. Yabana: Proc. ISC High Performance 2018, Lecture Notes in Computer Science, Vol. 10876, 202 (2018)

    Google Scholar 

  44. H. Liu, C. guo, G. Vampa, J.L. Zhang, T. Sarmiento, M. Xiao, P.H. Bucksbaum, J. Vuckovic, S. Fan, D.A. Reis: Nature Phys. 14, 1006 (2018)

    Google Scholar 

  45. Web site of SALMON: https://salmon-tddft.jp

Download references

Acknowledgements

This research was supported by JST-CREST under grant number JP-MJCR16N5, and by MEXT, Japan as a priority issue theme 7 to be tackled by using Post-K Computer, and by JSPS KAKENHI, Japan Grant Numbers 20H02649, 20K15194, 19K05364.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Yabana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yabana, K., Takeuchi, T., Uemoto, M., Yamada, A., Yamada, S. (2021). Ab Initio Computational Approach for Nanophotonics Based on Time-Dependent Density Functional Theory. In: Yatsui, T. (eds) Progress in Nanophotonics 6. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-030-71516-8_4

Download citation

Publish with us

Policies and ethics