Skip to main content

Metrics Design of Usability and Behavior Analysis of a Human-Robot-Game Platform

HRG Metrics for LOLY-MIDI

Part of the Communications in Computer and Information Science book series (CCIS,volume 1388)

Abstract

As an innovative technological challenge, creating and designing metrics to evaluate communication between human-robot-game interaction will benefit children’s education. In humans, facial expressions or emotions are pervasive forms of communication for interaction between people. When people are trying to establish communication deploying robots and game-based learning, which are growing in popularity, expectations are that these forms of relationship will become a means through which interaction is a common tool. Although it is intuitive for a regular human being to vary their expressions and emotions, their interpretation through metrics, or results of using the game as a form of learning, is a complex task that must be carried out. This paper explains the proposed design and usability metrics testing children’s use of a human-robot-game platform, identified as LOLY-MIDI. This platform promotes inclusive education, primarily those children with Autism Spectrum Disorder (ASD).

Keywords

  • Human-robot-game
  • Metrics
  • Dashboard
  • Games-based learning
  • EDG
  • Autism
  • ASD
  • SAR

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-71503-8_13
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-71503-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Gros, B.S.: Digital games in education: the design of games-based learning environments. J. Res. Technol. Educ. 40(1), 23–38 (2007)

    CrossRef  Google Scholar 

  2. Plass, J.L., Homer, B.D., Kinzer, C.K.: Foundations of game-based learning. Educ. Psychol. 50(4), 258–283 (2015)

    CrossRef  Google Scholar 

  3. Feil-Seifer, D., Mataric, M.J.: Defining socially assistive robotics. In: 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, pp. 465–468 (2005)

    Google Scholar 

  4. Paillacho Chiluiza, D.F., Solorzano Alcivar, N.I., Paillacho Corredores, J.S.: LOLY 1.0: a proposed human-robot-game platform architecture for the engagement of children with autism in the learning process. In: Botto-Tobar, M., Zamora, W., Larrea Plúa, J., Bazurto Roldan, J., Santamaría Philco, A. (eds.) ICCIS 2020. AISC, vol. 1273, pp. 225–238. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-59194-6_19

    CrossRef  Google Scholar 

  5. Volkmar, F.R., Paul, R., Rogers, S.J., Pelphrey, K.A.: Handbook of Autism and Pervasive Developmental Disorders, Diagnosis, Development, and Brain Mechanisms. John Wiley & Sons, 2014 (2014)

    Google Scholar 

  6. Rice, K., Moriuchi, J.M., Jones, W., Klin, A.: Parsing heterogeneity in autism spectrum disorders: visual scanning of dynamic social scenes in school-aged children. J. Am. Acad. Child Adolesc. Psychiatry 51(3), 238–248 (2012)

    CrossRef  Google Scholar 

  7. Tsatsanis, K.D.: Heterogeneity in learning style in Asperger syndrome and high-functioning autism. Topics Lang. Disord. 24(4), 260–270 (2004)

    CrossRef  Google Scholar 

  8. American-Psychiatric-Association: Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub, 2013 (2013)

    Google Scholar 

  9. Sigman, M., Mundy, P., Sherman, T., Ungerer, J.: Social interactions of autistic, mentally retarded and normal children and their caregivers. J. Child Psychol. Psychiatry 27(5), 647–656 (1986)

    CrossRef  Google Scholar 

  10. Christensen, D.L., et al.: Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveill. Summ. 65(13), 1 (2018)

    Google Scholar 

  11. Ministerio de Salud Pública del Ecuador: Trastornos del Espectro Autista en niños y adolescentes: Detección, diagnóstico, tratamiento, rehabilitación y seguimiento. Guía de Práctica Clínica (2017)

    Google Scholar 

  12. Kozima, H., Nakagawa, C., Yasuda, Y.: Interactive robots for communication-care: a case-study in autism therapy. In: ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, pp. 341–346 (2005)

    Google Scholar 

  13. Contreras, R.S., Serra, A., Terrón, J.L.: Games and ADHD-ADD: a systematic mapping study. Acta Ludologica 2(2), 4–26 (2019)

    Google Scholar 

  14. Yamakami, T.: From user experience to social experience: A new perspective for mobile social game design. In: 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing, pp. 792–796 (2012)

    Google Scholar 

  15. Solorzano, N.I., Carrera, D.A., Sornoza, L.I., Mendoza, M.: Developing a dashboard for monitoring usability of educational games apps for children. In: Proceedings of the 2019 2nd International Conference on Computers in Management and Business, pp. 70–75 (2019)

    Google Scholar 

  16. Solorzano, N.I., Sornoza, L.I., Carrera, D.A.: Adoption of children’s educational video games monitored with dashboards in the cloud. Rev. Iberica Sist. Technol. Inf. 2019(19), 146–160 (2019)

    Google Scholar 

  17. Jain, S., Thiagarajan, B., Shi, Z., Clabaugh, C., Matarić, M.J.: Modeling engagement in long-term, in-home socially assistive robot interventions for children with autism spectrum disorders. Sci. Robot. 5(39) (2020)

    Google Scholar 

  18. Baltrušaitis, T., Robinson, P., Morency, L.-P.: Openface: an open-source facial behavior analysis toolkit. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–10. IEEE (2016)

    Google Scholar 

  19. Solorzano, N.I., Sanzogni, L., Houghton, L.: A pluralistic methodology for a refined selection of drivers influencing information system adoption in public organizations: the case for Ecuador (2016)

    Google Scholar 

  20. Creswell, J.W., Creswell, J.D.: Research design: qualitative, quantitative, and mixed methods approaches. Sage publications, 2017, Third Edition edn. (2017)

    Google Scholar 

  21. Baltrusaitis, T., Robinson, P., Morency, L.-P.: Constrained local neural fields for robust facial landmark detection in the wild. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 354–361 (2013)

    Google Scholar 

  22. Cristinacce, D., Cootes, T.F.: Feature detection and tracking with constrained local models. In: Bmvc, Vol. 1, No. 2, p. 3 (2006)

    Google Scholar 

  23. Baltrusaitis, T.: Output Format OpenFace. In: Editor (Ed.)^(Eds.): 'Book Output Format OpenFace' (edn.), pp. FaceLandmarkImg and FeatureExtraction (2019)

    Google Scholar 

  24. Yu, Y., Mora, K.A.F., Odobez, J.-M.: Robust and accurate 3d head pose estimation through 3dmm and online head model reconstruction. In: 12th IEEE international conference on automatic face & gesture recognition (fg 2017), pp. 711–718 (2017)

    Google Scholar 

  25. Fanelli, G., Gall, J., Van Gool, L.: Real-time head pose estimation with random regression forests. In: CVPR 2011, pp. 617–624. IEEE (2011)

    Google Scholar 

  26. Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Robust discriminative response map fitting with constrained local models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3444–3451 (2013)

    Google Scholar 

  27. Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Incremental face alignment in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1859–1866 (2014)

    Google Scholar 

  28. https://medium.com/insights-on-virtual-reality/what-you-should-know-about-head-trackers-7e2289578a22. Accessed 11 Oct 2020

  29. Świrski, L., Bulling, A., Dodgson, N.: Robust real-time pupil tracking in highly off-axis images. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 173–176 (2012)

    Google Scholar 

  30. Lidegaard, M., Hansen, D.W., Krüger, N.: Head-mounted device for point-of-gaze estimation in three dimensions. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 83–86 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayeth I. Solorzano Alcivar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Solorzano Alcivar, N.I., Herrera Paltan, L.C., Lima Palacios, L.R., Paillacho Corredores, J.S., Paillacho Chiluiza, D.F. (2021). Metrics Design of Usability and Behavior Analysis of a Human-Robot-Game Platform. In: Botto-Tobar, M., Montes León, S., Camacho, O., Chávez, D., Torres-Carrión, P., Zambrano Vizuete, M. (eds) Applied Technologies. ICAT 2020. Communications in Computer and Information Science, vol 1388. Springer, Cham. https://doi.org/10.1007/978-3-030-71503-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71503-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71502-1

  • Online ISBN: 978-3-030-71503-8

  • eBook Packages: Computer ScienceComputer Science (R0)