Skip to main content

Time-Delayed Control for Planar Snake Robots

  • Chapter
  • First Online:
Adaptive Robust Control for Planar Snake Robots

Abstract

The implementation of SMC-based techniques in Chap. 2 strictly required the uncertainties in the system to be bounded [1, 2]. However, considering these state-dependent uncertainties to be bounded can be regarded as a conservative assumption for practical scenarios. Furthermore, these approaches depend upon the viscous friction model to compute the nominal friction forces which is essential for determining the control effort. For situations where this analytical friction model doesn’t hold, tracking accuracy would eventually be further compromised. Hence, to relax such assumptions and circumvent the dependence on the friction model, an artificial-delay-based methodology has been proposed in this chapter to solve the tracking problem for a planar snake robot. Time-Delayed Control (TDC) is a robust control method applied to solve the trajectory tracking problem for systems with model as well as parametric uncertainties and disturbances without assuming them to be bounded, utilizing input and output measurements from a delayed time. The implementation of TDC is based on the assumption that the uncertainties should vary slowly over time. As practical snake robots are known to travel slowly through their surroundings, the uncertainty in the ground condition or the frictional forces, do evolve at a slow rate making TDC a natural and fitting choice to accomplish satisfactory tracking performance for a snake robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The solutions of system \(\dot{\mathbf {x}} = \mathbf {f}(\mathbf {x},t)\) remain Uniformly Ultimately Bounded with ultimate bound b [15], if \(\exists ~a,~b,~c,~T \in \mathbb {R}^{+}\) such that for \(0< a < c\) and \(\left\Vert \mathbf {x}(0)\right\Vert \le a\), \(\left\Vert \mathbf {x}(t)\right\Vert \le b~\forall ~t \ge T\).

References

  1. Mukherjee, J., Mukherjee, S., Kar, I.N.: Sliding mode control of planar snake robot with uncertainty using virtual holonomic constraints. IEEE Robot. Autom. Lett. 2(2), 1077–1084 (2017). http://orcid.org/10.1109/LRA.2017.2657892

  2. Mukherjee, J., Kar, I.N., Mukherjee, S.: Adaptive sliding mode control for head-angle and velocity tracking of planar snake robot. In: 2017 11th Asian Control Conference (ASCC), pp. 537–542 (2017). https://doi.org/10.1109/ASCC.2017.8287227

  3. Hsia, T.C., Gao, L.S.: Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers. In: Proceedings., IEEE International Conference on Robotics and Automation, vol. 3, pp. 2070–2075 (1990). https://doi.org/10.1109/ROBOT.1990.126310

  4. Youcef-Toumi, K., Ito, O.: A time delay controller for systems with unknown dynamics. In: 1988 American Control Conference, pp. 904–913 (1988). https://doi.org/10.23919/ACC.1988.4789852

  5. Jin, M., Lee, J., Chang, P.H., Choi, C.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron. 56(9), 3593–3601 (2009). http://orcid.org/10.1109/TIE.2009.2024097

  6. Lee, J., Yoo, C., Park, Y.S., Park, B., Lee, S.J., Gweon, D.G., Chang, P.H.: An experimental study on time delay control of actuation system of tilt rotor unmanned aerial vehicle. Mechatronics 22(2), 184 – 194 (2012). https://doi.org/10.1016/j.mechatronics.2012.01.005. http://www.sciencedirect.com/science/article/pii/S0957415812000062

  7. Roy, S., Kar, I.N., Lee, J.: Toward position-only time-delayed control for uncertain Euler-Lagrange systems: experiments on wheeled mobile robots. IEEE Robot. Autom. Lett. 2(4), 1925–1932 (2017)

    Article  Google Scholar 

  8. Roy, S., Kar, I.N., Lee, J., Jin, M.: Adaptive-robust time-delay control for a class of uncertain Euler-Lagrange systems. IEEE Trans. Ind. Electron. 64(9), 7109–7119 (2017)

    Article  Google Scholar 

  9. Banerjee, A., Mukherjee, J., un Nabi, M.: Time-energy efficient guidance strategy for a realistic 3d interceptor: an adaptive robust time-delayed control approach with input saturation. Aerosp. Sci. Technol. 104, 106015 (2020). https://doi.org/10.1016/j.ast.2020.106015

  10. Banerjee, A., Mukherjee, J., un Nabi, M., Kar, I.N.: An artificial delay based robust guidance strategy for an interceptor with input saturation. ISA Trans. (2020). https://doi.org/10.1016/j.isatra.2020.09.013

  11. Sarkar, R., Mukherjee, J., Patil, D., Kar, I.N.: Re-entry trajectory tracking of reusable launch vehicle using artificial delay based robust guidance law. Advances in Space Research 67(1), 557–570 (2021). http://orcid.org/https://doi.org/10.1016/j.asr.2020.10.006

  12. Sarkar, R., Mukherjee, J., Patil, D., Kar, I.N.: Artificial time delay based adaptive robust fault tolerant control for rlv during re-entry phase. In: 2020 28th Mediterranean Conference on Control and Automation (MED), pp. 56–61 (2020). https://doi.org/10.1109/MED48518.2020.9182892

  13. Mukherjee, J., Roy, S., Kar, I.N., Mukherjee, S.: A double-layered artificial delay-based approach for maneuvering control of planar snake robots. J. Dyn. Syst., Meas., Control 141(4) (2018). https://doi.org/10.1115/1.4042033

  14. Liljeback, P., Pettersen, K.Y., Stavdahl, O.: Modelling and control of obstacle-aided snake robot locomotion based on jam resolution. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3807–3814 (2009). https://doi.org/10.1109/ROBOT.2009.5152273

  15. Khalil, H.K., Grizzle, J.: Nonlinear Systems, vol. 3. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyjit Mukherjee .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, J., Kar, I.N., Mukherjee, S. (2021). Time-Delayed Control for Planar Snake Robots. In: Adaptive Robust Control for Planar Snake Robots. Studies in Systems, Decision and Control, vol 363. Springer, Cham. https://doi.org/10.1007/978-3-030-71460-4_3

Download citation

Publish with us

Policies and ethics