Skip to main content

Abstract

This book aims to address the robustness issues encountered in controlling the motion of a snake robot when moving on surfaces with varying ground conditions. The snake robot considered in this book is an articulated serial chain robot with multiple binary links connected through active joints. Classically, planar snake robots achieve translation by leveraging differential friction characteristics in different directions by creating undulations in its body. Hence, the quality of the contact and determination of the variables contributing to the contact and friction forces are crucial toward the efficient motion planning of a planar snake robot. Variation in the ground condition in particular will have a significant effect on the tracking performance of the robot which has to be dealt with through effective controller design. In this book, adaptive robust control techniques like Sliding-Mode Control (SMC), Adaptive SMC (ASMC), Time-Delayed Control (TDC) and Adaptive Robust TDC (ARTDC) have been employed to achieve robustness in tracking the performance of planar snake robot while trading off between performance, input effort and limits or determinism of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray, J., Lissmann, H.W.: The kinetics of locomotion of the grass-snake. J. Exp. Biol. 26(4), 354–367 (1950). http://jeb.biologists.org/content/26/4/354

  2. Lissmann, H.W.: Rectilinear locomotion in a snake (boa occidentalis). J. Exp. Biol. 26(4), 368–379 (1950). http://jeb.biologists.org/content/26/4/368

  3. Jayne, B.C.: Kinematics of terrestrial snake locomotion. Copeia pp. 915–927 (1986)

    Google Scholar 

  4. Jayne, B.C.: Muscular mechanisms of snake locomotion: an electromyographic study of the sidewinding and concertina modes of crotalus cerastes, nerodia fasciata and elaphe obsoleta. J. Exp. Biol. 140(1), 1–33 (1988)

    Article  Google Scholar 

  5. Jayne, B.C., Davis, J.D.: Kinematics and performance capacity for the concertina locomotion of a snake (coluber constrictor). J. Exp. Biol. 156(1), 539–556 (1991). http://jeb.biologists.org/content/156/1/539

  6. Secor, S.M., Jayne, B.C., Bennett, A.F.: Locomotor performance and energetic cost of sidewinding by the snake crotalus cerastes. J. Exp. Biol. 163(1), 1–14 (1992)

    Article  Google Scholar 

  7. Chen, J., Friesen, W., Iwasaki, T.: Mechanisms underlying rhythmic locomotion: body-fluid interaction in undulatory swimming. J. Exp. Biol. 214(4), 561–574 (2011)

    Article  Google Scholar 

  8. Umetani, Y., Hirose, S.: Biomechanical study on serpentine locomotion. Trans. Soc. Inst. Control Eng. 8(6), 724–731 (1972)

    Google Scholar 

  9. Bennet, S., McConnell, T., Trubatch, S.L.: Quantitative analysis of the speed of snakes as a function of peg spacing. J. Exp. Biol. 60(1), 161–165 (1974). http://jeb.biologists.org/content/60/1/161

  10. Hirose, S., Umetani, Y.: Kinematic control of active cord mechanism with tactile sensors. Trans. Soci. Inst. Control Eng. 12(5), 543–547 (1976)

    Google Scholar 

  11. Hirose, S., Morishima, A.: Design and control of a mobile robot with an articulated body. Int. J. Robot. Res. 9(2), 99–114 (1990). https://doi.org/10.1177/027836499000900208

  12. Hirose, S.: Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, Oxford (1993)

    Google Scholar 

  13. Burdick, J.W., Radford, J., Chirikjian, G.S.: A’sidewinding’locomotion gait for hyper-redundant robots. Adv. Robot. 9(3), 195–216 (1994)

    Article  Google Scholar 

  14. Chirikjian, G.S., Burdick, J.W.: The kinematics of hyper-redundant robot locomotion. IEEE Trans. Robot. Autom. 11(6), 781–793 (1995)

    Article  Google Scholar 

  15. Ostrowski, J., Burdick, J.: The geometric mechanics of undulatory robotic locomotion. Int. J. Robot. Res. 17(7), 683–701 (1998)

    Article  Google Scholar 

  16. Krishnaprasad, P.S., Tsakiris, D.P.: G-snakes: nonholonomic kinematic chains on lie groups. In: Proceedings of 1994 33rd IEEE Conference on Decision and Control, vol. 3, pp. 2955–2960 (1994). https://doi.org/10.1109/CDC.1994.411343

  17. Shugen: Analysis of creeping locomotion of a snake-like robot. Adv. Robot.15(2), 205–224 (2001). https://doi.org/10.1163/15685530152116236

  18. Migadis, G., Kyriakopoulos, K.J.: Design and forward kinematic analysis of a robotic snake. In: Proceedings of International Conference on Robotics and Automation, vol. 4, pp. 3493–3498 (1997). https://doi.org/10.1109/ROBOT.1997.606876

  19. Nilsson, M.: Serpentine locomotion on surfaces with uniform friction. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 2, pp. 1451–1455 (2004). https://doi.org/10.1109/IROS.2004.1389649

  20. Liljeback, P., Pettersen, K.Y., Stavdahl, O.: Modelling and control of obstacle-aided snake robot locomotion based on jam resolution. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3807–3814 (2009). https://doi.org/10.1109/ROBOT.2009.5152273

  21. Liljeback, P., Pettersen, K.Y., Stavdahl, C., Gravdahl, J.T.: Controllability and stability analysis of planar snake robot locomotion. IEEE Trans. Autom. Control 56(6), 1365–1380 (2011). http://orcid.org/10.1109/TAC.2010.2088830

  22. Liljebäck, P., Pettersen, K.Y., Stavdahl, Ø., Gravdahl, J.T.: A review on modelling, implementation, and control of snake robots. Robot. Auton. Syst. 60(1), 29–40 (2012)

    Article  Google Scholar 

  23. Saito, M., Fukaya, M., Iwasaki, T.: Modeling, analysis, and synthesis of serpentine locomotion with a multilink robotic snake. IEEE Control Syst. Mag. 22(1), 64–81 (2002)

    Article  Google Scholar 

  24. Sato, M., Fukaya, M., Iwasaki, T.: Serpentine locomotion with robotic snakes. IEEE Control Syst. Mag. 22(1), 64–81 (2002). http://orcid.org/10.1109/37.980248

  25. Liljebäck, P., Pettersen, K.Y., Stavdahl, Ø., Gravdahl, J.T.: Snake robots: modelling, mechatronics, and control. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  26. Sarrigeorgidis, K., Kyriakopoulos, K.J.: Stabilization and trajectory tracking of a robotic snake. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 3, pp. 3061–3062 (1997). https://doi.org/10.1109/CDC.1997.657919

  27. Paap, K.L., Kirchner, F., Klaassen, B.: Motion control scheme for a snake-like robot. In: Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA’99 (Cat. No.99EX375), pp. 59–63 (1999). https://doi.org/10.1109/CIRA.1999.809947

  28. Prautsch, P., Mita, T.: Control and analysis of the gait of snake robots. In: Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328), vol. 1, pp. 502–507 (1999). https://doi.org/10.1109/CCA.1999.806692

  29. Date, H., Hoshi, Y., Sampei, M.: Locomotion control of a snake-like robot based on dynamic manipulability. In: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), vol. 3, pp. 2236–2241 (2000). https://doi.org/10.1109/IROS.2000.895301

  30. Date, H., Sampei, M., Nakaura, S.: Control of a snake robot in consideration of constraint force. In: Proceedings of the 2001 IEEE International Conference on Control Applications (CCA’01) (Cat. No.01CH37204), pp. 966–971 (2001). https://doi.org/10.1109/CCA.2001.973995

  31. Matsuno, F., Suenaga, K.: Control of redundant snake robot based on kinematic model. In: Proceedings of the 41st SICE Annual Conference. SICE 2002, vol. 3, pp. 1481–1486 (2002). https://doi.org/10.1109/SICE.2002.1196525

  32. Yamada, T., Tanaka, K., Yamakita, M.: Winding and task control of snake like robot. SICE 2003 Annual Conference (IEEE Cat. No.03TH8734), vol. 3, pp. 3059–3063 (2003)

    Google Scholar 

  33. Transeth, A.A., van de Wouw, N., Pavlov, A., Hespanha, J.P., Pettersen, K.Y.: Tracking control for snake robot joints. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3539–3546 (2007). https://doi.org/10.1109/IROS.2007.4399174

  34. Ishikawa, M.: Iterative feedback control of snake-like robot based on principal fibre bundle modelling. Int. J. Adv. Mechatron. Syst. 1(3), 175–182 (2009)

    Article  Google Scholar 

  35. Mohammadi, A., Rezapour, E., Maggiore, M., Pettersen, K.Y.: Maneuvering control of planar snake robots using virtual holonomic constraints. IEEE Trans. Control Syst. Technol. 24(3), 884–899 (2016). http://orcid.org/10.1109/TCST.2015.2467208

  36. Zhang, A., Ma, S., Li, B., Wang, M., Guo, X., Wang, Y.: Adaptive controller design for underwater snake robot with unmatched uncertainties. Sci. China Inf. Sci. 59(5), 052205 (2016). https://doi.org/10.1007/s11432-015-5421-8

  37. Ariizumi, R., Takahashi, R., Tanaka, M., Asai, T.: Head-trajectory-tracking control of a snake robot and its robustness under actuator failure. IEEE Trans. Control Syst. Technol. 1–9 (2018). https://doi.org/10.1109/TCST.2018.2866964

  38. Wang, G., Yang, W., Shen, Y., Shao, H., Wang, C.: Adaptive path following of underactuated snake robot on unknown and varied frictions ground: Theory and validations. IEEE Robot. Autom. Lett. 3(4), 4273–4280 (2018). http://orcid.org/10.1109/LRA.2018.2864602

  39. Hannigan, E., Song, B., Khandate, G., Haas-Heger, M., Yin, J., Ciocarlie, M.: Automatic snake gait generation using model predictive control (2019)

    Google Scholar 

  40. Travers, M., Whitman, J., Choset, H.: Shape-based coordination in locomotion control. Int. J. Robot. Res. 37(10), 1253–1268 (2018). https://doi.org/10.1177/0278364918761569

  41. Sartoretti, G., Paivine, W., Shi, Y., Wu, Y., Choset, H.: Distributed learning of decentralized control policies for articulated mobile robots. IEEE Trans. Robot. 35(5), 1109–1122 (2019). http://orcid.org/10.1109/TRO.2019.2922493

  42. Consolini, L., Maggiore, M.: Virtual holonomic constraints for Euler-Lagrange systems. IFAC Proc. Vol. 43(14), 1193–1198 (2010). https://doi.org/10.3182/20100901-3-IT-2016.00107. 8th IFAC Symposium on Nonlinear Control Systems

  43. Maggiore, M., Consolini, L.: Virtual holonomic constraints for Euler–Lagrange systems. IEEE Trans. Autom. Control 58(4), 1001–1008 (2013)

    Article  MathSciNet  Google Scholar 

  44. Consolini, L., Maggiore, M.: Control of a bicycle using virtual holonomic constraints. Automatica 49(9), 2831 – 2839 (2013). https://doi.org/10.1016/j.automatica.2013.05.021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyjit Mukherjee .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, J., Kar, I.N., Mukherjee, S. (2021). Introduction. In: Adaptive Robust Control for Planar Snake Robots. Studies in Systems, Decision and Control, vol 363. Springer, Cham. https://doi.org/10.1007/978-3-030-71460-4_1

Download citation

Publish with us

Policies and ethics