Skip to main content

Vorticity and Spin Polarization in Heavy Ion Collisions: Transport Models

  • Chapter
  • First Online:
Strongly Interacting Matter under Rotation

Part of the book series: Lecture Notes in Physics ((LNP,volume 987))

Abstract

Heavy ion collisions generate strong fluid vorticity in the produced hot quark–gluon matter which could in turn induce measurable spin polarization of hadrons. We review recent progress on the vorticity formation and spin polarization in heavy ion collisions with transport models. We present an introduction to the fluid vorticity in non-relativistic and relativistic hydrodynamics and address various properties of the vorticity formed in heavy ion collisions. We discuss the spin polarization in a vortical fluid using the Wigner function formalism in which we derive the freeze-out formula for the spin polarization. Finally, we give a brief overview of recent theoretical results for both the global and local spin polarization of \(\Lambda \) and \(\bar{\Lambda }\) hyperons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, this is true only after taking the average over many collision events, as the collision geometry itself (and thus the direction of the OAM) suffers from event-by-event fluctuations.

  2. 2.

    We note that the left panel of Fig. 9.9 is just for illustrative purpose, the real velocity profile is much more complicated including components that can contribute a positive \(v_2\) but an opposite vortical structure to the one shown in the figure.

References

  1. Liang, Z.T., Wang, X.N.: Phys. Rev. Lett. 94 (2005). arXiv:nucl-th/0410079 [nucl-th]

  2. Liang, Z.T., Wang, X.N.: Phys. Lett. B 629, 20–26 (2005). arXiv:nucl-th/0411101 [nucl-th]

  3. Voloshin, S.A.: arXiv:nucl-th/0410089 [nucl-th]

  4. Betz, B., Gyulassy, M., Torrieri, G.: Phys. Rev. C 76 (2007). arXiv:0708.0035 [nucl-th]

  5. Becattini, F., Piccinini, F., Rizzo, J.: Phys. Rev. C 77 (2008). arXiv:0711.1253 [nucl-th]

  6. Gao, J.H., Chen, S.W., Deng, W.t., Liang, Z.T., Wang, Q., Wang, X.N.: Phys. Rev. C 77, 044902 (2008). arXiv:0710.2943 [nucl-th]

  7. Huang, X.G., Huovinen, P., Wang, X.N.: Phys. Rev. C 84 (2011). arXiv:1108.5649 [nucl-th]

  8. Chen, S.W., Deng, J., Gao, J.H., Wang, Q.: Front. Phys. China 4, 509–16 (2009) arXiv:0801.2296 [hep-ph]

  9. Adamczyk, L., et al.: STAR. Nature 548, 62–65 (2017). arXiv:1701.06657 [nucl-ex]

    Article  ADS  Google Scholar 

  10. Adam, J., et al.: STAR. Phys. Rev. C 98 (2018). arXiv:1805.04400 [nucl-ex]

  11. Acharya, S., et al.: ALICE. Phys. Rev. C 101 (2020). arXiv:1909.01281 [nucl-ex]

  12. Zhang, J.J., Fang, R.H., Wang, Q., Wang, X.N.: Phys. Rev. C 100, 064904 (2019). arXiv:1904.09152 [nucl-th]

  13. Baznat, M., Gudima, K., Sorin, A., Teryaev, O.: Phys. Rev. C 88 (2013). arXiv:1301.7003 [nucl-th]

  14. Csernai, L.P., Magas, V.K., Wang, D.J.: Phys. Rev. C 87 (2013). arXiv:1302.5310 [nucl-th]

  15. Csernai, L.P., Wang, D.J., Bleicher, M., Stöcker, H.: Phys. Rev. C 90 (2014)

    Google Scholar 

  16. Becattini, F., Inghirami, G., Rolando, V., Beraudo, A., Del Zanna, L., De Pace, A., Nardi, M., Pagliara, G., Chandra, V.: Eur. Phys. J. C 75, 406 (2015). arXiv:1501.04468 [nucl-th]

  17. Teryaev, O., Usubov, R.: Phys. Rev. C 92 (2015)

    Google Scholar 

  18. Jiang, Y., Lin, Z.W., Liao, J.: Phys. Rev. C 94 (2016). arXiv:1602.06580 [hep-ph]

  19. Deng, W.T., Huang, X.G.: Phys. Rev. C 93 (2016). arXiv:1603.06117 [nucl-th]

  20. Ivanov, Y.B., Soldatov, A.A.: Phys. Rev. C 95 (2017). arXiv:1701.01319 [nucl-th]

  21. Deng, X.G., Huang, X.G., Ma, Y.G., Zhang, S.: Phys. Rev. C 101 (2020). arXiv:2001.01371 [nucl-th]

  22. Li, H., Pang, L.G., Wang, Q., Xia, X.L.: Phys. Rev. C 96 (2017). arXiv:1704.01507 [nucl-th]

  23. Wei, D.X., Deng, W.T., Huang, X.G.: Phys. Rev. C 99 (2019). arXiv:1810.00151 [nucl-th]

  24. Shi, S., Li, K., Liao, J.: Phys. Lett. B 788, 409–413 (2019). arXiv:1712.00878 [nucl-th]

  25. Karpenko, I., Becattini, F.: Eur. Phys. J. C 77, 213 (2017). arXiv:1610.04717 [nucl-th]

  26. Xie, Y., Wang, D., Csernai, L.P.: Phys. Rev. C 95 (2017). arXiv:1703.03770 [nucl-th]

  27. Sun, Y., Ko, C.M.: Phys. Rev. C 96 (2017). arXiv:1706.09467 [nucl-th]

  28. Xie, Y.L., Bleicher, M., Stöcker, H., Wang, D.J., Csernai, L.P.: Phys. Rev. C 94 (2016). arXiv:1610.08678 [nucl-th]

  29. Moffatt, H.K.: J. Fluid Mech. 35, 117 (1969)

    Google Scholar 

  30. Moreau, J.J., Acad, C.R.: Sci. Paris 252, 2810 (1961)

    Google Scholar 

  31. Heinz, U.W.: Phys. Rev. Lett. 51, 351 (1983)

    Google Scholar 

  32. Elze, H.T., Gyulassy, M., Vasak, D.: Nucl. Phys. B 276, 706–728 (1986)

    Google Scholar 

  33. Vasak, D., Gyulassy, M., Elze, H.T.: Annals Phys. 173, 462–492 (1987)

    Google Scholar 

  34. Zhuang, P., Heinz, U.W.: Annals Phys. 245, 311–338 (1996). arXiv:nucl-th/9502034 [nucl-th]

  35. Gao, J.H., Liang, Z.T., Pu, S., Wang, Q., Wang, X.N.: Phys. Rev. Lett. 109 (2012). arXiv:1203.0725 [hep-ph]

  36. Chen, J.W., Pu, S., Wang, Q., Wang, X.N.: Phys. Rev. Lett. 110 (2013). arXiv:1210.8312 [hep-th]

  37. Gao, J.H., Wang, Q.: Phys. Lett. B 749 542–546 (2015). arXiv:1504.07334 [nucl-th]

  38. Fang, R.H., Pang, L.G., Wang, Q., Wang, X.N.: Phys. Rev. C 94, 024904 (2016). arXiv:1604.04036 [nucl-th]

  39. Hidaka, Y., Pu, S., Yang, D.L.: Phys. Rev. D 95 (2017). arXiv:1612.04630 [hep-th]

  40. Mueller, N., Venugopalan, R.: Phys. Rev. D 97 (2018). arXiv:1701.03331 [hep-ph]

  41. Huang, A., Shi, S., Jiang, Y., Liao, J., Zhuang, P.: Phys. Rev. D 98 (2018). arXiv:1801.03640 [hep-th]

  42. Liu, Y.C., Gao, L.L., Mameda, K., Huang, X.G.: Phys. Rev. D 99 (2019). arXiv:1812.10127 [hep-th]

  43. Gao, J.H., Pu, S., Wang, Q.: Phys. Rev. D 96, 016002 (2017). arXiv:1704.00244 [nucl-th]

  44. Gao, J.H., Liang, Z.T., Wang, Q., Wang, X.N.: Phys. Rev. D 98 (2018). arXiv:1802.06216 [hep-ph]

  45. Weickgenannt, N., Sheng, X.L., Speranza, E., Wang, Q., Rischke, D.H.: Phys. Rev. D 100 (2019). arXiv:1902.06513 [hep-ph]

  46. Gao, J.H., Liang, Z.T.: Phys. Rev. D 100 (2019). arXiv:1902.06510 [hep-ph]

  47. Hattori, K., Hidaka, Y., Yang, D.L.: Phys. Rev. D 100 (2019). arXiv:1903.01653 [hep-ph]

  48. Wang, Z., Guo, X., Shi, S., Zhuang, P.: Phys. Rev. D 100 (2019). arXiv:1903.03461 [hep-ph]

  49. Liu, Y.C., Mameda, K., Huang, X.G.: Chin. Phys. C 44 (2020). arXiv:2002.03753 [hep-ph]

  50. Sheng, X.L., Wang, Q., Huang, X.G.: Phys. Rev. D 102(2), 025019 (2020). https://doi.org/10.1103/PhysRevD.102.025019, [arXiv:2005.00204 [hep-ph]]

  51. Florkowski, W., Kumar, A., Ryblewski, R.: Phys. Rev. C 98(4), 044906 (2018). https://doi.org/10.1103/PhysRevC.98.044906, [arXiv:1806.02616 [hep-ph]]

  52. Yang, D.L., Hattori, K., Hidaka, Y.: JHEP 20, 070 (2020). https://doi.org/10.1007/JHEP07(2020)070. arXiv:2002.02612 [hep-ph]

  53. Weickgenannt, N., Speranza, E., Sheng, X.l., Wang, Q., Rischke, D.H.: arXiv:2005.01506 [hep-ph]

  54. Wang, Z., Guo, X., Zhuang, P.: arXiv:2009.10930 [hep-th]

  55. Becattini, F., Chandra, V., Del Zanna, L., Grossi, E.: Annals Phys. 338, 32–49 (2013). arXiv:1303.3431 [nucl-th]

  56. Pang, L.G., Petersen, H., Wang, Q., Wang, X.N.: Phys. Rev. Lett. 117 (2016). arXiv:1605.04024 [hep-ph]

  57. Becattini, F., Karpenko, I.: Phys. Rev. Lett. 120 (2018). arXiv:1707.07984 [nucl-th]

  58. Xia, X.L., Li, H., Tang, Z.B., Wang, Q.: Phys. Rev. C 98 (2018). arXiv:1803.00867 [nucl-th]

  59. Del Zanna, L., Chandra, V., Inghirami, G., Rolando, V., Beraudo, A., De Pace, A., Pagliara, G., Drago, A., Becattini, F.: Eur. Phys. J. C 73, 2524 (2013). arXiv:1305.7052 [nucl-th]

  60. Pang, L., Wang, Q., Wang, X.N.: Phys. Rev. C 86 (2012). arXiv:1205.5019 [nucl-th]

  61. Pang, L.G., Petersen, H., Wang, X.N.: Phys. Rev. C 97 (2018). arXiv:1802.04449 [nucl-th]

  62. Hirano, T., Huovinen, P., Murase, K., Nara, Y.: Prog. Part. Nucl. Phys. 70 108–158 (2013). arXiv:1204.5814 [nucl-th]

  63. Bloczynski, J., Huang, X.G., Zhang, X., Liao, J.: Phys. Lett. B 718, 1529–1535 (2013). arXiv:1209.6594 [nucl-th]

  64. Bloczynski, J., Huang, X.G., Zhang, X., Liao, J.: Nucl. Phys. A 939, 85–100 (2015). arXiv:1311.5451 [nucl-th]

  65. Deng, W.T., Huang, X.G.: Phys. Rev. C 85 (2012). arXiv:1201.5108 [nucl-th]

  66. Abelev, B.I., et al.: STAR. Phys. Rev. C 76 (2007). arXiv:0705.1691 [nucl-ex]

  67. Siddique, I., Liang, Z.T., Lisa, M.A., Wang, Q., Xu, Z.B.: Chin. Phys. C 43 (2019). arXiv:1710.00134 [nucl-th]

  68. Sheng, X.L., Oliva, L., Wang, Q.: Phys. Rev. D 101 (2020). arXiv:1910.13684 [nucl-th]

  69. Sheng, X.L., Wang, Q., Wang, X.N.: Phys. Rev. D 102 (2020). arXiv:2007.05106 [nucl-th]

  70. Xia, X.L., Li, H., Huang, X.G., Huang, H.Z.: arXiv:2010.01474 [nucl-th]

  71. Taya, H., et al.: [ExHIC-P], Phys. Rev. C 102, 021901 (2020). arXiv:2002.10082 [nucl-th]

  72. Ipp, A., Di Piazza, A., Evers, J., Keitel, C.H.: Phys. Lett. B 666, 315–319 (2008). arXiv:0710.5700 [hep-ph]

  73. Becattini, F., Karpenko, I., Lisa, M., Upsal, I., Voloshin, S.: Phys. Rev. C 95 (2017). arXiv:1610.02506 [nucl-th]

  74. Xia, X.L., Li, H., Huang, X.G., Huang, H.Z.: Phys. Rev. C 100 (2019). arXiv:1905.03120 [nucl-th]

  75. Becattini, F., Cao, G., Speranza, E.: Eur. Phys. J. C 79, 741 (2019). arXiv:1905.03123 [nucl-th]

  76. Kornas, F. for HADES Collaboration, Talk given at Strange Quark Matter 2019, Bali, Italy, June 11–15, 2019

    Google Scholar 

  77. Florkowski, W., Friman, B., Jaiswal, A., Speranza, E.: Phys. Rev. C 97 (2018). arXiv:1705.00587 [nucl-th]

  78. Hattori, K., Hongo, M., Huang, X.G., Matsuo, M., Taya, H.: Phys. Lett. B 795, 100–106 (2019). arXiv:1901.06615 [hep-th]

  79. Sun, Y., Ko, C.M.: Phys. Rev. C 99 (2019). arXiv:1810.10359 [nucl-th]

  80. Liu, S.Y.F., Sun, Y., Ko, C.M.: Phys. Rev. Lett. 125 (2020). arXiv:1910.06774 [nucl-th]

  81. Adam, J., et al.: STAR. Phys. Rev. Lett. 123 (2019). arXiv:1905.11917 [nucl-ex]

  82. Florkowski, W., Kumar, A., Ryblewski, R., Mazeliauskas, A.: Phys. Rev. C 100 (2019). arXiv:1904.00002 [nucl-th]

  83. Wu, H.Z., Pang, L.G., Huang, X.G., Wang, Q.: Phys. Rev. Res. 1 (2019). arXiv:1906.09385 [nucl-th]

  84. Wang, Q.: Nucl. Phys. A 967, 225–232 (2017) arXiv:1704.04022 [nucl-th]

  85. Liu, Y.C., Huang, X.G.: Nucl. Sci. Tech. 31, 56 (2020). arXiv:2003.12482 [nucl-th]

  86. Huang, X.G.: arXiv:2002.07549 [nucl-th]

  87. Becattini, F., Lisa, M.A.: arXiv:2003.03640 [nucl-ex]

  88. Gao, J.H., Ma, G.L., Pu, S., Wang, Q.: Nucl. Sci. Tech. 31, 90 (2020). arXiv:2005.10432 [hep-ph]

  89. Muller, B., Schaefer, A.: Phys. Rev. D 98 (2018). arXiv:1806.10907 [hep-ph]

  90. Guo, Y., Shi, S., Feng, S., Liao, J.: Phys. Lett. B 798 (2019). arXiv:1905.12613 [nucl-th]

  91. Guo, X., Liao, J., Wang, E.: Sci. Rep. 10, 2196 (2020). arXiv:1904.04704 [hep-ph]

Download references

Acknowledgements

We thank Wei-Tian Deng, Hui Li, Yu-Chen Liu, Yin Jiang, Zi-Wei Lin, Long-Gang Pang, Shuzhe Shi, De-Xian Wei, and Xin-Nian Wang for collaborations and discussions. This work is supported in part by the NSFC Grants No. 11535012, No. 11675041, and No. 11890713, as well as by the NSF Grant No. PHY-1913729 and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Guang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, XG., Liao, J., Wang, Q., Xia, XL. (2021). Vorticity and Spin Polarization in Heavy Ion Collisions: Transport Models. In: Becattini, F., Liao, J., Lisa, M. (eds) Strongly Interacting Matter under Rotation. Lecture Notes in Physics, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-030-71427-7_9

Download citation

Publish with us

Policies and ethics