Skip to main content

Vorticity and Polarization in Heavy-Ion Collisions: Hydrodynamic Models

  • Chapter
  • First Online:
Strongly Interacting Matter under Rotation

Part of the book series: Lecture Notes in Physics ((LNP,volume 987))

Abstract

Fluid dynamic approach is a workhorse for modelling collective dynamics in relativistic heavy-ion collisions. The approach has been successful in describing various features of the momentum distributions of hadrons produced in the heavy-ion collisions, such as \(p_T\) spectra and flow coefficients \(v_n\). As such, the description of the phenomenon of polarization of \(\Lambda \) hyperons in heavy-ion collisions has to be incorporated into the hydrodynamic approach. We start this chapter by introducing different definitions of vorticity in relativistic fluid dynamics. Then we present a derivation of the polarization of spin 1/2 fermions in the relativistic fluid. The latter is directly applied to compute the spin polarization of the \(\Lambda \) hyperons, which are produced from the hot and dense medium, described with fluid dynamics. It is followed by a review of the existing calculations of global or local polarization of \(\Lambda \) hyperons in different hydrodynamic models of relativistic heavy-ion collisions. We particularly focus on the explanations of the collision energy dependence of the global \(\Lambda \) polarization from the different hydrodynamic models, the polarization component in the beam direction as well as on the origins of the global and local \(\Lambda \) polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes the vorticity is defined without the factor 1/2; we use the definition that gives the vorticity of the fluid rotating as a whole with a constant angular velocity \(\Omega \), to be \(\omega =\Omega \).

  2. 2.

    Typical grid spacing used in the calculations: \(\Delta x=\Delta y=0.2\) fm, \(\Delta \eta =0.05-0.15\) and timestep \(\Delta \tau =0.05-0.1\) fm/c depending on the collision energy. A finer grid with \(\Delta x=\Delta y=0.125\) fm was taken to simulate peripheral collisions.

  3. 3.

    The phenomenon of baryon transparency describes transporting the baryon charge of the colliding nuclei to the forward and backward rapidities. Opposite to that, baryon stopping implies that the baryon charge from the colliding nuclei is stopped around mi-rapidity.

  4. 4.

    The projection is made on a plane orthogonal to the direction of the collective flow velocity: \(\varpi ^{\mu \nu }_\text {proj} u_\nu =0\).

References

  1. Becattini, F., Inghirami, G., Rolando, V.,  Beraudo, A.,  Del Zanna, L., De Pace, A., Nardi, M., Pagliara, G., Chandra, V.: A study of vorticity formation in high energy nuclear collisions. Eur. Phys. J. C 75(9), 406 (2015)

    Google Scholar 

  2. Gourgoulhon, E., Publ, E.A.S.: Ser. 21, 43 (2006)

    Google Scholar 

  3. Becattini, F., Csernai, L., Wang, D.J.: Phys. Rev. C 88(3), 034905 (2013) [erratum: Phys. Rev. C 93(6), 069901 (2016)] https://doi.org/10.1103/PhysRevC.88.034905 [arXiv:1304.4427 [nucl-th]]

  4. Becattini, F., Bucciantini, L., Grossi, E., Tinti, L.: Eur. Phys. J. C 75(5), 191 (2015)

    Article  ADS  Google Scholar 

  5. Becattini, F.: Phys. Rev. Lett. 108, (2012). https://doi.org/10.1103/PhysRevLett.108.244502. [arXiv:1201.5278 [gr-qc]]

  6. Becattini, F., Chandra, V., Del Zanna, L., Grossi, E.: Relativistic distribution function for particles with spin at local thermodynamical equilibrium. Ann. Phys. 338, 32 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Fang, R.H., Pang, L.G., Wang, Q., Wang, X.N.: Phys. Rev. C 94(2) (2016)

    Google Scholar 

  8. Huovinen, P., Petersen, H.: Particlization in hybrid models. Eur. Phys. J. A 48, 171 (2012)

    Article  ADS  Google Scholar 

  9. Cooper, F., Frye, G.: Comment on the single particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production. Phys. Rev. D 10, 186 (1974)

    Article  ADS  Google Scholar 

  10. Karpenko I., Huovinen P., Petersen H. and Bleicher M.: Estimation of the shear viscosity at finite net-baryon density from \(A+A\) collision data at \(\sqrt{s_{{{\rm NN}}} } = 7.7-200\) GeV, Phys. Rev. C 91(6), 064901 (2015)

    Google Scholar 

  11. Xie, Y., Wang, D., Csernai, L.P.: Global \(\Lambda \) polarization in high energy collisions. Phys. Rev. C 95(3), 031901 (2017)

    Google Scholar 

  12. Ivanov, Y.B., Toneev, V.D., Soldatov, A.A.: Estimates of hyperon polarization in heavy-ion collisions at collision energies \(\sqrt{s_{NN}}=\) 4–40 GeV. Phys. Rev. C 100(1), 014908 (2019)

    Google Scholar 

  13. Karpenko, I., Huovinen, P., Bleicher, M.: A 3+1 dimensional viscous hydrodynamic code for relativistic heavy ion collisions. Comput. Phys. Commun. 185, 3016–3027 (2014)

    Article  ADS  Google Scholar 

  14. Magas, V.K., Csernai, L.P., Strottman, D.D.: The Initial state of ultrarelativistic heavy ion collision. Phys. Rev. C 64 (2001)

    Google Scholar 

  15. Ivanov, Y.B., Soldatov, A.A.: Phys. Rev. C 102(2), 024916 (2020). https://doi.org/10.1103/PhysRevC.102.024916, [arXiv:2004.05166 [nucl-th]]

  16. Ivanov, Y.B., Russkikh, V.N., Toneev, V.D.: Phys. Rev. C 73 (2006). https://doi.org/10.1103/PhysRevC.73.044904 [arXiv:nucl-th/0503088 [nucl-th]]

  17. Israel, W.: Nonstationary irreversible thermodynamics: A Causal relativistic theory. Annals Phys. 100, 310 (1976); Israel, W., Stewart, J.M.: Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 118, 341 (1979)

    Google Scholar 

  18. Steinheimer, J., Schramm, S., Stocker, H.: J. Phys. G 38 (2011)

    Google Scholar 

  19. Becattini, F., Manninen, J., Gazdzicki, M.: Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions. Phys. Rev. C 73 (2006)

    Google Scholar 

  20. Milekhin, G.A., Eksp, Zh: Teor. Fiz. 35, 1185 (1958); Sov.Phys. JETP35, 829 (1959); Trudy FIAN16, 51 (1961)

    Google Scholar 

  21. Del Zanna, L., Chandra, V., Inghirami, G., Rolando, V., Beraudo, A., De Pace, A., Pagliara, G., Drago, A., Becattini, F.: Eur. Phys. J. C 73, 2524 (2013). https://doi.org/10.1140/epjc/s10052-013-2524-5, [arXiv:1305.7052 [nucl-th]]

  22. Karpenko I., Becattini F.: Study of \(\Lambda \) polarization in relativistic nuclear collisions at \(\sqrt{s_{{{\rm NN}}}}=7.7\) –200 GeV. Eur. Phys. J. C 77(4), 213 (2017)

    Google Scholar 

  23. Adam, J., et al.: [STAR], Global polarization of \(\Lambda \) hyperons in Au+Au collisions at \(\sqrt{s_{_{NN}}}\) = 200 GeV. Phys. Rev. C 98 (2018)

    Google Scholar 

  24. Becattini, F., Karpenko, I.: Collective longitudinal polarization in relativistic heavy-ion collisions at very high energy. Phys. Rev. Lett. 120(1), 012302 (2018)

    Google Scholar 

  25. Bozek, P., Broniowski, W.: Transverse-momentum fluctuations in relativistic heavy-ion collisions from event-by-event viscous hydrodynamics. Phys. Rev. C 85 (2012)

    Google Scholar 

  26. Pang, L.G., Petersen, H., Wang, Q., Wang, X.N.: Phys. Rev. Lett. 117(19), 192301 (2016) https://doi.org/10.1103/PhysRevLett.117.192301, [arXiv:1605.04024 [hep-ph]]

  27. Deng, W.T., Huang, X.G.: Vorticity in heavy-ion collisions. Phys. Rev. C 93(6), 064907 (2016)

    Google Scholar 

  28. Adam, J. et al.: [STAR], Polarization of \(\Lambda \) (\(\bar{\Lambda }\)) hyperons along the beam direction in Au+Au collisions at \(\sqrt{s_{_{NN}}}\) = 200 GeV. Phys. Rev. Lett. 123(13), 132301 (2019)

    Google Scholar 

  29. Xie, Y.,  Wang, D., Csernai, L.P.: Eur. Phys. J. C 80(1), 39 (2020) https://doi.org/10.1140/epjc/s10052-019-7576-8, [arXiv:1907.00773 [hep-ph]]

  30. Florkowski, W., Kumar, A., Ryblewski, R., Mazeliauskas, A.: Phys. Rev. C 100(5, )054907 (2019) https://doi.org/10.1103/PhysRevC.100.054907, [arXiv:1904.00002 [nucl-th]]

  31. Wu, H.Z., Pang, L.G., Huang, X.G., Wang, Q.: Phys. Rev. Research. 1 (2019). https://doi.org/10.1103/PhysRevResearch.1.033058, [arXiv:1906.09385 [nucl-th]]

  32. Karpenko, I., Becattini, F.: Lambda polarization in heavy ion collisions: from RHIC BES to LHC energies. Nucl. Phys. A 982, 519–522 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iurii Karpenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karpenko, I. (2021). Vorticity and Polarization in Heavy-Ion Collisions: Hydrodynamic Models. In: Becattini, F., Liao, J., Lisa, M. (eds) Strongly Interacting Matter under Rotation. Lecture Notes in Physics, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-030-71427-7_8

Download citation

Publish with us

Policies and ethics