Skip to main content

Exact Solutions in Quantum Field Theory Under Rotation

  • Chapter
  • First Online:
Strongly Interacting Matter under Rotation

Part of the book series: Lecture Notes in Physics ((LNP,volume 987))

Abstract

We discuss the construction and properties of rigidly rotating states for free scalar and fermion fields in quantum field theory. On unbounded Minkowski space-time, we explain why such states do not exist for scalars. For the Dirac field, we are able to construct rotating vacuum and thermal states, for which expectation values can be computed exactly in the massless case. We compare these quantum expectation values with the corresponding quantities derived in relativistic kinetic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the convention that \(\varepsilon ^{\hat{0}\hat{1}\hat{2}\hat{3}} = \varepsilon ^{\hat{t}\hat{\rho }\hat{\phi }\hat{z}} = 1\).

  2. 2.

    Note that, since mesons are bosons, the Fermi–Dirac statistics cannot be strictly applied.

References

  1. Meier, D.L.: Black Hole Astrophysics: The Engine Paradigm. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  2. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1985)

    Book  MATH  Google Scholar 

  3. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Frolov, V.P., Thorne, K.S.: Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole. Phys. Rev. D 39, 2125–2154 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate Killing horizon. Phys. Rep. 207, 49–136 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Casals, M., Dolan, S.R., Nolan, B.C., Ottewill, A.C., Winstanley, E.: Quantization of fermions on Kerr space-time. Phys. Rev. D 87, 064027 (2013)

    Google Scholar 

  7. Jacak, B.V., Müller, B.: The exploration of hot nuclear matter. Nature 337, 310–314 (2012)

    Google Scholar 

  8. Kharzeev, D.E., Liao, J., Voloshin, S.A., Wang, G.: Chiral magnetic and vortical effects in high-energy nuclear collisions - a status report. Prog. Part. Nucl. Phys. 88, 1–28 (2016)

    Article  ADS  Google Scholar 

  9. Collaboration, S.T.A.R.: Global \(\Lambda \)-hyperon polarization in nuclear collisions. Nature 548, 62–65 (2017)

    Article  Google Scholar 

  10. Collaboration, S.T.A.R.: Global polarization of \(\Lambda \)-hyperons in Au+Au collisions at \(\sqrt{s_{NN}} = 200 {\rm GeV}\). Phys. Rev. C 98, 014910 (2018)

    Google Scholar 

  11. Florkowski, W., Friman, B., Jaiswal, A., Speranza, E.: Relativistic fluid dynamics with spin. Phys. Rev. C 97, 041901 (2018)

    Google Scholar 

  12. Becattini, F., Florkowski, W., Speranza, E.: Spin tensor and its role in non-equilibrium thermodynamics. Phys. Lett. B 789, 419–425 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Buzzegoli, M., Becattini, F.: General thermodynamic equilibrium with axial chemical potential for the free Dirac field. JHEP 12, 002 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Cercignani, C., Kremer, G.M.: The Relativistic Boltzmann Equation: Theory and Application. Birkhäuser Verlag, Basel (2002)

    Book  MATH  Google Scholar 

  15. Becattini, F., Bucciantini, L., Grossi, E., Tinti, L.: Local thermodynamical equilibrium and the \(\beta \)-frame for a quantum relativistic fluid. Eur. Phys. J. C 75, 191 (2015)

    Article  ADS  Google Scholar 

  16. Becattini, F., Grossi, E.: Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration. Phys. Rev. D 92, 045037 (2015)

    Google Scholar 

  17. Ambruş, V.E.: Helical massive fermions under rotation. JHEP 08, 016 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ambruş, V.E., Chernodub, M.N., Helical vortical effects, helical waves, and anomalies of Dirac fermions. arXiv:1912.11034 [hep-th]

  19. Jaiswal, A., Friman, B., Redlich, K.: Relativistic second-order dissipative hydrodynamics at finite chemical potential. Phys. Lett. B 751, 548–552 (2015)

    Article  ADS  Google Scholar 

  20. Wang, Q.: Global and local spin polarization in heavy ion collisions: a brief overview. Nucl. Phys. A 967, 225–232 (2017)

    Article  ADS  Google Scholar 

  21. Huang, X.-G., Koide, T.: Shear viscosity, bulk viscosity, and relaxation times of causal dissipative relativistic fluid-dynamics at finite temperature and chemical potential. Nucl. Phys. A 889, 73–92 (2012)

    Article  ADS  Google Scholar 

  22. Tanabashi, M., et al.: (Particle Data Group): The review of particle physics. Phys. Rev. D 98, 030001 (2018)

    Google Scholar 

  23. Ambruş, V.E., Blaga, R.: Relativistic rotating Boltzmann gas using the tetrad formalism. Ann. West Univ. Timisoara, Ser. Phys. 58, 89–108 (2015)

    Google Scholar 

  24. Florkowski, W., Ryblewski, R., Strickland, M.: Testing viscous and anisotropic hydrodynamics in an exactly solvable case. Phys. Rev. C 88, 024903 (2013)

    Google Scholar 

  25. Kapusta, J.I., Landshoff, P.V.: Finite-temperature field theory. J. Phys. G: Nucl. Part. Phys. 15, 267–285 (1989)

    Article  ADS  Google Scholar 

  26. Vilenkin, A.: Quantum field theory at finite temperature in a rotating system. Phys. Rev. D 21, 2260–2269 (1980)

    Article  ADS  Google Scholar 

  27. Itzykson, C., Zuber, J.B.: Quantum Field Theory. Mcgraw-Hill, New York (1980)

    MATH  Google Scholar 

  28. Duffy, G., Ottewill, A.C.: The rotating quantum thermal distribution. Phys. Rev. D 67, 044002 (2003)

    Google Scholar 

  29. Ambruş, V.E., Winstanley, E.: Rotating quantum states. Phys. Lett. B 734, 296–301 (2014)

    Article  ADS  MATH  Google Scholar 

  30. Letaw, J.R., Pfautsch, J.D.: The quantized scalar field in rotating coordinates. Phys. Rev. D 22, 1345–1351 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  31. Nicolaevici, N.: Null response of uniformly rotating Unruh detectors in bounded regions. Class. Quantum Grav. 18, 5407–5411 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Iyer, B.R.: Dirac field theory in rotating coordinates. Phys. Rev. D 26, 1900–1905 (1982)

    Article  ADS  Google Scholar 

  33. Ambruş, V.E., Winstanley, E.: Rotating fermions inside a cylindrical boundary. Phys. Rev. D 93, 104014 (2016)

    Google Scholar 

  34. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  35. Rezzolla, L., Zanotti, O.: Relativistic Hydrodynamics. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  36. Prokhorov, G.Y., Teryaev, O.V., Zakharov, V.I.: Axial current in rotating and accelerating medium. Phys. Rev. D 98, 071901 (2018)

    Google Scholar 

  37. Vilenkin, A.: Macroscopic parity-violating effects: Neutrino fluxes from rotating black holes and in rotating thermal radiation. Phys. Rev. D 20, 1807–1812 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  38. Prokhorov, G.Y., Teryaev, O.V., Zakharov, V.I.: Effects of rotation and acceleration in the axial current: density operator vs Wigner function. JHEP 02, 146 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Becattini, F., Chandra, V., Del Zanna, F., Grossi, E.: Relativistic distribution function for particles with spin at local thermodynamical equilibrium. Ann. Phys. 338, 32–49 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Ván, P., Biró, T.S.: First order and stable relativistic dissipative hydrodynamics. Phys. Lett. B 709, 106–110 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  41. Ván, P., Biró, T.S.: Dissipation flow-frames: particle, energy, thermometer. In: Pilotelli, M., Beretta, G.P. (eds.): Proceedings of the 12th Joint European Thermodynamics Conference, Cartolibreria SNOOPY, 2013, pp. 546–551 (2013). arXiv:1305.3190 [gr-qc]

  42. Bouras, I., Molnár, E., Niemi, H., Xu, Z., El, A., Fochler, O., Greiner, C., Rischke, D.H.: Investigation of shock waves in the relativistic Riemann problem: a comparison of viscous fluid dynamics to kinetic theory. Phys. Rev. C 82, 024910 (2010)

    Google Scholar 

  43. Duff, M.J.: Twenty years of the Weyl anomaly. Class. Quantum Grav. 11, 1387–1404 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Ambruş, V.E.: Quantum non-equilibrium effects in rigidly-rotating thermal states. Phys. Lett. B 771, 151–156 (2017)

    Article  ADS  MATH  Google Scholar 

  45. Hortacsu, M., Rothe, K.D., Schroer, B.: Zero energy eigenstates for the Dirac boundary problem. Nucl. Phys. B 171, 530–542 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  46. Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B., Weisskopf, V.F.: A new extended model of hadrons. Phys. Rev. D 9, 3471–3495 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  47. Chernodub, M.N., Gongyo, S.: Edge states and thermodynamics of rotating relativistic fermions under magnetic field. Phys. Rev. D 96, 096014 (2017)

    Google Scholar 

  48. Chernodub, M.N., Gongyo, S.: Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics. JHEP 1701, 136 (2017)

    Article  ADS  MATH  Google Scholar 

  49. Chernodub, M.N., Gongyo, S.: Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions. Phys. Rev. D 95, 096006 (2017)

    Google Scholar 

  50. Hawking, S.W., Ellis, G.F.R.: The Large-scale Structure of Space-time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  51. Moschella, U.: The de Sitter and anti-de Sitter sightseeing tour. Séminaire Poincaré 1, 1–12 (2005)

    Google Scholar 

  52. Avis, S.J., Isham, C.J., Storey, D.: Quantum field theory in anti-de Sitter space-time. Phys. Rev. D 18, 3565–3576 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  53. Ambruş, V.E., Kent, C., Winstanley, E.: Analysis of scalar and fermion quantum field theory on anti-de Sitter spacetime. Int. J. Mod. Phys. D 27, 1843014 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Ambruş, V.E., Winstanley, E.: Thermal expectation values of fermions on anti-de Sitter space-time. Class. Quant. Grav. 34, 145010 (2017)

    Google Scholar 

  55. Kent, C., Winstanley, E.: Hadamard renormalized scalar field theory on anti-de Sitter spacetime. Phys. Rev. D 91, 044044 (2015)

    Google Scholar 

  56. Ambruş, V.E., Winstanley, E.: Renormalised fermion vacuum expectation values on anti-de Sitter space-time. Phys. Lett. B 749, 597–602 (2015)

    Article  ADS  MATH  Google Scholar 

  57. Ambruş, V.E., Winstanley, E.: Quantum corrections in thermal states of fermions on anti-de Sitter space-time. AIP Conf. Proc. 1916, 020005 (2017)

    Google Scholar 

  58. Kent, C., Winstanley, E.: The global rotating scalar field vacuum on anti-de Sitter space-time. Phys. Lett. B 740, 188–191 (2015)

    Article  ADS  MATH  Google Scholar 

  59. Ambruş, V.E., Winstanley, E.: Dirac fermions on an anti-de Sitter background. AIP Conf. Proc. 1634, 40–49 (2015)

    Article  ADS  Google Scholar 

  60. Casalderrey-Solana, J., Liu, H., Mateos, D., Rajagopal, K., Wiedemann, U.A.: Gauge/String Duality, Hot QCD and Heavy Ion Collisions. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  61. DeWolfe, O., Gubser, S.S., Rosen, C., Teaney, D.: Heavy ions and string theory. Prog. Part. Nucl. Phys. 75, 86–132 (2014)

    Article  ADS  Google Scholar 

  62. Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Ammon, M., Erdmenger, J.: Gauge/Gravity Duality: Foundations and Applications. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  64. Carter, B.: Hamilton-Jacobi and Schrodinger separable solutions of Einstein’s equations. Commun. Math. Phys. 10, 280–310 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Hawking, S.W., Hunter, C.J., Taylor, M.: Rotation and the adS/CFT correspondence. Phys. Rev. D 59, 064005 (1999)

    Google Scholar 

  66. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Hartle, J.B., Hawking, S.W.: Path integral derivation of black hole radiance. Phys. Rev. D 13, 2188–2203 (1976)

    Article  ADS  Google Scholar 

  68. Ottewill, A.C., Winstanley, E.: The renormalized stress tensor in Kerr space-time: general results. Phys. Rev. D 62, 084018 (2000)

    Google Scholar 

  69. Ottewill, A.C., Winstanley, E.: Divergence of a quantum thermal state on Kerr space-time. Phys. Lett. A 273, 149–152 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Duffy, G., Ottewill, A.C.: The renormalized stress tensor in Kerr space-time: numerical results for the Hartle-Hawking vacuum. Phys. Rev. D 77, 024007 (2008)

    Google Scholar 

Download references

Acknowledgements

The work of V. E. Ambruş is supported by a grant from the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-III-P1-1.1-PD-2016-1423. The work of E. Winstanley is supported by the Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC grant ST/P000800/1 and partially supported by the H2020-MSCA-RISE-2017 Grant No. FunFiCO-777740.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Winstanley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ambruş, V.E., Winstanley, E. (2021). Exact Solutions in Quantum Field Theory Under Rotation. In: Becattini, F., Liao, J., Lisa, M. (eds) Strongly Interacting Matter under Rotation. Lecture Notes in Physics, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-030-71427-7_4

Download citation

Publish with us

Policies and ethics