Skip to main content

Polarization in Relativistic Fluids: A Quantum Field Theoretical Derivation

  • Chapter
  • First Online:
Strongly Interacting Matter under Rotation

Part of the book series: Lecture Notes in Physics ((LNP,volume 987))

Abstract

We review the calculation of polarization in a relativistic fluid within the framework of statistical quantum field theory. We derive the expressions of the spin density matrix and the mean spin vector both for a single quantum relativistic particle and for a quantum-free field. After introducing the formalism of the covariant Wigner function for the scalar and the Dirac field, the relation between the spin density matrix and the covariant Wigner function is obtained. The formula is applied to the fluid produced in relativistic nuclear collisions by using the local thermodynamic equilibrium density operator and recovering previously known formulae. The dependence of these results on the spin tensor and pseudo-gauge transformations of the stress-energy tensor is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this paper the symbol \(\varepsilon \) stands for the on-shell energy, that is \(\varepsilon =\sqrt{ \mathrm{p}^2 + m^2}\).

  2. 2.

    Henceforth, by  :  we will denote a double contraction of rank 2 tensors, e.g. \(\varphi : {\widehat{J}}= \varphi _{\mu \nu } {\widehat{J}}^{\mu \nu }\).

  3. 3.

    Note that the Lorentz transformations in Minkowski space–time and their counterparts of the fundamental (0, 1/2) representation of the SL(2,C) group are henceforth identified. Particularly, the standard Lorentz transformation [p] will indicate either a SO(1,3) transformation or a SL(2,C) transformation.

  4. 4.

    It should be reminded that the normal ordering for fermion fields involves a minus sign for each permutation, e.g. \(:a a^\dagger : = - a^\dagger a\). Therefore, taking into account anticommutation relations, for fields \(:\Psi _A(x){\overline{\Psi }}_B(y): = -:{\overline{\Psi }}_B(y) \Psi _A(x):\)

References

  1. Adamczyk, L., et al.: Nature 548, 62 (2017)

    Article  ADS  Google Scholar 

  2. Voloshin, S.A.: EPJ Web Conf. 171, 07002 (2018)

    Article  Google Scholar 

  3. Adam, J., et al.: Phys. Rev. C 98 (2018)

    Google Scholar 

  4. Niida, T.: Nucl. Phys. A 982, 511 (2019)

    Article  ADS  Google Scholar 

  5. Adam, J., et al.: Phys. Rev. Lett. 123(13) (2019)

    Google Scholar 

  6. Wang, Z., Guo, X., Shi, S., Zhuang, P.: Phys. Rev. D 100(1) (2019)

    Google Scholar 

  7. Hattori, K., Hidaka, Y., Yang, D.L.: Phys. Rev. D 100(9) (2019)

    Google Scholar 

  8. Gao, J.H., Liang, Z.T.: Phys. Rev. D 100(5) (2019)

    Google Scholar 

  9. Weickgenannt, N., Sheng, X.L., Speranza, E., Wang, Q., Rischke, D.H.: Phys. Rev. D 100(5) (2019)

    Google Scholar 

  10. Yang, D.L., Hattori, K., Hidaka, Y.: JHEP 07, 070 (2020)

    Google Scholar 

  11. Liu, Y.C., Mameda, K., Huang, X.G.: Chin. Phys. C 44(9), 094101 (2020)

    Google Scholar 

  12. Florkowski, W., Friman, B., Jaiswal, A., Speranza, E.: Phys. Rev. C 97(4) (2018)

    Google Scholar 

  13. Florkowski, W., Ryblewski, R., Kumar, A.: Prog. Part. Nucl. Phys. 108 (2019)

    Google Scholar 

  14. Florkowski, W., Kumar, A., Ryblewski, R., Singh, R.: Phys. Rev. C 99(4) (2019)

    Google Scholar 

  15. Becattini, F., Chandra, V., Del Zanna, L., Grossi, E.: Ann. Phys. 338, 32 (2013)

    Article  ADS  Google Scholar 

  16. Becattini, F., Florkowski, W., Speranza, E.: Phys. Lett. B 789, 419 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Becattini, F.: Phys. Rev. Lett. 108 (2012)

    Google Scholar 

  18. Becattini, F., Bucciantini, L., Grossi, E., Tinti, L.: Eur. Phys. J. C 75(5), 191 (2015)

    Article  ADS  Google Scholar 

  19. Weinberg, S.: The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  20. Moussa, P., Stora, R.: Angular analysis of elementary particle reactions (1966)

    Google Scholar 

  21. Becattini, F., Karpenko, I., Lisa, M., Upsal, I., Voloshin, S.: Phys. Rev. C 95(5) (2017)

    Google Scholar 

  22. De Groot, S.R., Van Leeuwen, W.A., Van Weert, C.G.: Relativistic Kinetic Theory. Principles and Applications. North-Holland, Amsterdam (1980)

    Google Scholar 

  23. Vasak, D., Gyulassy, M., Elze, H.T.: Ann. Phys. 173, 462 (1987)

    Article  ADS  Google Scholar 

  24. Weinberg, S.: Phys. Rev. 133, B1318 (1964)

    Article  ADS  Google Scholar 

  25. Fang, R.H., Pang, L.G., Wang, Q., Wang, X.N.: Phys. Rev. C94(2), 024904 (2016)

    Google Scholar 

  26. Florkowski, W., Friman, B., Jaiswal, A., Ryblewski, R., Speranza, E.: Phys. Rev. D 97(11) (2018)

    Google Scholar 

  27. Hehl, F.W.: Rept. Math. Phys. 9, 55 (1976)

    Article  ADS  Google Scholar 

  28. Becattini, F.: Nucl. Phys. A 1005, 121833 (2021)

    Google Scholar 

  29. Zubarev, D.N., Prozorkevich, A.V., Smolyanskii, S.A.: Theor. Math. Phys. 40, 821 (1979). https://doi.org/10.1007/BF01032069

  30. Becattini, F., Buzzegoli, M., Grossi, E.: Particles 2(2), 197 (2019)

    Article  Google Scholar 

  31. Florkowski, W.: Phenomenology of Ultra-Relativistic Heavy-Ion Collisions (2010)

    Google Scholar 

  32. Becattini, F., Lisa, M.A.: (2020). https://doi.org/10.1146/annurev-nucl-021920-095245

  33. Hattori, K., Hongo, M., Huang, X.G., Matsuo, M., Taya, H.: Phys. Lett. B 795, 100 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Stimulating discussions with W. Florkowski and L. Tinti are gratefully acknowledged. I am very grateful to Q. Wang and X. G. Huang for very useful suggestions and to M. Buzzegoli and A. Palermo for a careful review of the manuscript and for making the figure. Special thanks to Enrico Speranza for his very valuable remarks and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Becattini .

Editor information

Editors and Affiliations

Appendix: Angular Momentum Decomposition

Appendix: Angular Momentum Decomposition

We shall prove that the orbital part of the angular momentum operator (2.79) can be written as an integral in momentum space of on-shell functions. We will confine ourselves to the proof for the particle term in (2.48), its extension to the antiparticle term and the proof of the vanishing of the mixed term being alike. By using (2.48) and choosing the hyperplane \(t=0\) as integration hypersurface, for the particle term, we can write:

$$\begin{aligned} \begin{aligned} \int \mathrm{d}^3 \mathrm{x}\; x^\mu k^\nu&\mathrm{tr}_4 (\gamma ^0 {\widehat{W}}(x,k)) =\\&\int \mathrm{d}^3 \mathrm{x}\; x^\mu k^\nu \sum _{r,s} \frac{1}{(2\pi )^3} \int \frac{\mathrm{d}^3 \mathrm{p}}{2\varepsilon }\frac{\mathrm{d}^3 \mathrm{p}^\prime }{2\varepsilon ^\prime } \mathrm{e}^{-i(p - p^\prime ) \cdot x} \times \\&\times \delta ^4 \left( k - \frac{p+p^\prime }{2} \right) {\widehat{a}}^\dagger _s (p^\prime ) {\widehat{a}}_r (p) \bar{u}_s(p') \gamma ^0 u_r(p) \\ =&8 \int \mathrm{d}^3 \mathrm{x}\; x^\mu k^\nu \sum _{r,s} \frac{1}{(2\pi )^3} \int \frac{\mathrm{d}^3 \mathrm{p}}{4\varepsilon \, \varepsilon _{k,p}} \mathrm{e}^{i( 2 k -2 p )\cdot x}\times \\&\times \delta \left( k^0 - \frac{\varepsilon +\varepsilon ^\prime _{k,p}}{2} \right) {\widehat{a}}^\dagger _s (2k-p) {\widehat{a}}_r (p) \bar{u}_s(2k - p) \gamma ^0 u_r(p), \end{aligned} \end{aligned}$$
(2.96)

where

$$ \varepsilon _{k,p} = \sqrt{(2 \mathbf{k} - \mathbf{p})^2 + m^2}. $$

and it is understood that in the arguments of creation and destruction operators, as well as of spinors u, only the spatial part of the four-vector k, that is \(\mathbf{k}\), enters.

For \(\mu =0\), the integration is straightforward as \(x^0\) is constant on the hyperplane and we get, after integrating in \(\mathrm{d}^3 \mathrm{x}\):

$$\begin{aligned}&x^0 k^\nu \! \sum _{r,s}\! \int \!\! \frac{\mathrm{d}^3 \mathrm{p}}{4\varepsilon \, \varepsilon _{k,p}} \delta ^3 (\mathbf{p}-\mathbf{k}) \delta \left( k^0 - \frac{\varepsilon +\varepsilon _{k,p}}{2} \right) {\widehat{a}}^\dagger _s (2k-p) {\widehat{a}}_r (p) \bar{u}_s(2k - p) \gamma ^0 u_r(p) \\&= x^0 k^\nu \sum _{r,s} \frac{1}{(2\pi )^3} \frac{1}{4\varepsilon _k^2} \delta (k^0 -\varepsilon ) {\widehat{a}}^\dagger _s (k) {\widehat{a}}_r (k) \bar{u}_s(k) \gamma ^0 u_r(k) \\&= x^0 k^\nu \delta ( k^0 -\varepsilon _k) \sum _{r} \frac{1}{2\varepsilon _k} {\widehat{a}}^\dagger _r (k) {\widehat{a}}_r (k) \end{aligned}$$

because \(p'=2k-p\) and \(\mathbf{p}=\mathbf{k}\) implies in turn \(k=p=p^\prime \), hence k is on-shell; we have also used the known spinor relations.

For \(\mu = i \ne 0\), we can replace \(x^\mu \) with a derivative of the exponential and, integrating by parts,

$$\begin{aligned} \int \mathrm{d}^3 \mathrm{x}&\; x^i k^\nu \mathrm{tr}_4 (\gamma ^0 {\widehat{W}}(x,k)) \\ =&4 i\int \mathrm{d}^3 \mathrm{x}\; k^\nu \sum _{r,s} \frac{1}{(2\pi )^3} \int \frac{\mathrm{d}^3 \mathrm{p}}{4\varepsilon \, \varepsilon _{k,p}} \frac{\partial }{\partial p^i} \mathrm{e}^{i(2 k -2 p) \cdot x} \times \\&\times \delta \left( k^0 - \frac{\varepsilon +\varepsilon _{k,p}}{2} \right) {\widehat{a}}^\dagger _s (2k-p) {\widehat{a}}_r (p) \bar{u}_s(2k - p) \gamma ^0 u_r(p) \\ =&4 i\int \mathrm{d}^3 \mathrm{x}\; k^\nu \sum _{r,s} \frac{1}{(2\pi )^3} \int \frac{\mathrm{d}^3 \mathrm{p}}{4\varepsilon \, \varepsilon _{k,p}} \times \\ \times&\frac{\partial }{\partial p^i} \left[ \mathrm{e}^{i(2 k - 2 p) \cdot x} \delta \left( k^0 - \frac{\varepsilon +\varepsilon _{k,p}}{2} \right) {\widehat{a}}^\dagger _s (2k-p) {\widehat{a}}_r (p) \bar{u}_s(2k - p) \gamma ^0 u_r(p) \right] + \\&- 4 i\int \mathrm{d}^3 \mathrm{x}\; k^\nu \sum _{r,s} \frac{1}{(2\pi )^3} \int \frac{\mathrm{d}^3 \mathrm{p}}{4\varepsilon \, \varepsilon _{k,p}} \mathrm{e}^{i(2 k -2 p) \cdot x } \frac{\partial }{\partial p^i}\times \\&\,\,\times \left[ \delta \left( k^0 - \frac{\varepsilon +\varepsilon _{k,p}}{2} \right) {\widehat{a}}^\dagger _s (2k-p) {\widehat{a}}_r (p) \bar{u}_s(2k - p) \gamma ^0 u_r(p) \right] . \end{aligned}$$

The first term gives rise to a boundary integral which vanishes for fixed k and only the second term survives. We can now integrate in \(\mathrm{d}^3 \mathrm{x}\) getting:

$$\begin{aligned} \begin{aligned} - \frac{i}{2}&k^\nu \sum _{r,s} \int \frac{\mathrm{d}^3 \mathrm{p}}{4\varepsilon \, \varepsilon _{k,p}} \delta ^3(\mathbf{p}-\mathbf{k}) \frac{\partial }{\partial p^i}\times \\&\times \left[ \delta \left( k^0 - \frac{\varepsilon +\varepsilon _{k,p}}{2} \right) {\widehat{a}}^\dagger _s (2k-p) {\widehat{a}}_r (p) \bar{u}_s(2k - p) \gamma ^0 u_r(p) \right] . \end{aligned} \end{aligned}$$
(2.97)

There appear two derivative terms in the above expression: the derivative of the \(\delta \) can be written as

$$\begin{aligned} \begin{aligned} \frac{\partial }{\partial p^i} \delta \left( k^0 - \frac{\varepsilon + \varepsilon ^\prime _{k,p}}{2} \right) =&- \frac{1}{2} \frac{\partial }{\partial k^0} \delta \left( k^0 - \frac{\varepsilon + \varepsilon _{k,p}}{2} \right) \frac{\partial }{\partial p^i} (\varepsilon + \varepsilon _{k,p})\\ =&- \frac{1}{2} \frac{\partial }{\partial k^0} \delta \left( k^0 - \frac{\varepsilon + \varepsilon _{k,p}}{2} \right) \left( \frac{p^i}{\varepsilon } - \frac{2 k^i - p^i}{\varepsilon _{k,p}} \right) , \end{aligned} \end{aligned}$$
(2.98)

while the derivative of the factor including creation and destruction operators and spinors yields, taking into account the \(\delta ^3(\mathbf{p}-\mathbf{k})\):

$$\begin{aligned}&\delta ^3(\mathbf{p}-\mathbf{k}) \frac{\partial }{\partial p^i} {\widehat{a}}^\dagger _s (2k-p) {\widehat{a}}_r (p) \bar{u}_s(2k - p) \gamma ^0 u_r(p) \\ \nonumber&= \delta ^3(\mathbf{p}-\mathbf{k}) \left[ \left( {\widehat{a}}^\dagger _s (p) {{\mathop {\frac{\partial }{\partial p^i}}\limits ^{\leftrightarrow }}}{\widehat{a}}_r (p) \right) \bar{u}_s(p) \gamma ^0 u_r(p)+ {\widehat{a}}^\dagger _s (p){\widehat{a}}_r (p) \left( \bar{u}_s(p) {{\mathop {\frac{\partial }{\partial p^i}}\limits ^{\leftrightarrow }}}\gamma ^0 u_r(p) \right) \right] . \end{aligned}$$
(2.99)

We can now plug Eqs. (2.98) and (2.99) into (2.97). The term (2.98) vanishes because

$$\begin{aligned}&\delta ^3(\mathbf{p}-\mathbf{k}) \left( \frac{p^i}{\varepsilon } - \frac{2 k^i - p^i}{\varepsilon _{k,p}} \right) k^\nu \frac{\partial }{\partial k^0} \delta \left( k^0 - \frac{\varepsilon + \varepsilon _{k,p}}{2} \right) \\&= - \delta ^3(\mathbf{p}-\mathbf{k}) \left( \frac{p^i}{\varepsilon } - \frac{2 k^i - p^i}{\varepsilon _{k,p}} \right) \delta ^\nu _0 \delta \left( k^0 - \frac{\varepsilon + \varepsilon _{k,p}}{2} \right) \\&= - \delta ^3(\mathbf{p}-\mathbf{k}) \delta ^\nu _0 \delta \left( k^0 - \varepsilon \right) \left( \frac{k^i}{\varepsilon _k} - \frac{k^i}{\varepsilon _k} \right) = 0, \end{aligned}$$

and we are just left with the term from (2.99).

We can now integrate in \(\mathrm{d}^4 k\) according to Eq. (2.79). For \(\mu =i\),

$$\begin{aligned} \begin{aligned}&\int \mathrm{d}^4 k \int \mathrm{d}^3 \mathrm{x}\; x^i k^\nu \mathrm{tr}_4 (\gamma ^0 {\widehat{W}}(x,k)) = - \frac{i}{2} \int \mathrm{d}^4 k \; k^\nu \sum _{r,s} \frac{1}{4\varepsilon _k^2} \delta (k_0 - \varepsilon _k ) \times \\&\times \left[ \left( {\widehat{a}}^\dagger _s (k) {{\mathop {\frac{\partial }{\partial k^i}}\limits ^{\leftrightarrow }}}{\widehat{a}}_r (k) \right) \bar{u}_s(k) \gamma ^0 u_r(k) + {\widehat{a}}^\dagger _s (k){\widehat{a}}_r (k) \left( \bar{u}_s(k) {{\mathop {\frac{\partial }{\partial k^i}}\limits ^{\leftrightarrow }}}\gamma ^0 u_r(k) \right) \right] \\ =&- \frac{i}{2} \int \mathrm{d}^3 \text {k}\; k^\nu \sum _{r,s} \frac{1}{4\varepsilon _k^2} \left[ \left( {\widehat{a}}^\dagger _s (k) {{\mathop {\frac{\partial }{\partial k^i}}\limits ^{\leftrightarrow }}}{\widehat{a}}_r (k) \right) \bar{u}_s(k) \gamma ^0 u_r(k)\right. \\&\left. + {\widehat{a}}^\dagger _s (k){\widehat{a}}_r (k) \left( \bar{u}_s(k) {{\mathop {\frac{\partial }{\partial k^i}}\limits ^{\leftrightarrow }}}\gamma ^0 u_r(k) \right) \right] \end{aligned} \end{aligned}$$
(2.100)

with \(k^\nu \) again on-shell. We can then conclude that

$$ \int \mathrm{d}^4 k \int _{t=0} \mathrm{d}^3 \mathrm{x}\; x^\mu k^\nu \mathrm{tr}_4 (\gamma ^0 {\widehat{W}}(x,k)) = \int \frac{\mathrm{d}^3 \text {k}}{2 \varepsilon _k} \; \widehat{G}^\mu (k) k^\nu $$

with k on-shell and \(\widehat{G}^0(k) = 0\) if \(x^0 = 0\) is chosen.

Finally, we briefly address the calculation of the angular momentum tensor by using the Belinfante stress-energy tensor (2.82) where only the orbital part is involved. The calculation is very similar to the one just described, with the important difference that the second term of (2.82), obtained by swapping the indices of the first term in (2.82), leads to a term akin to the left hand side of Eq. (2.96) with exchanged indices:

$$ \int \mathrm{d}^3 \mathrm{x}\; x^\mu k^0 \mathrm{tr}_4 (\gamma ^\nu {\widehat{W}}(x,k)). $$

However, the final result is not proportional to \(k^\nu \) and a double derivative term appears just like in Eq. (2.100); therefore, this term is not cancelled by the Levi-Civita tensor in the calculation of the mean spin, unlike in the canonical case.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Becattini, F. (2021). Polarization in Relativistic Fluids: A Quantum Field Theoretical Derivation. In: Becattini, F., Liao, J., Lisa, M. (eds) Strongly Interacting Matter under Rotation. Lecture Notes in Physics, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-030-71427-7_2

Download citation

Publish with us

Policies and ethics