Skip to main content

Relativistic Decomposition of the Orbital and the Spin Angular Momentum in Chiral Physics and Feynman’s Angular Momentum Paradox

  • Chapter
  • First Online:
Strongly Interacting Matter under Rotation

Part of the book series: Lecture Notes in Physics ((LNP,volume 987))

Abstract

Over recent years we have witnessed tremendous progress in our understanding of the angular momentum decomposition. In the context of the proton spin problem in high-energy processes, the angular momentum decomposition by Jaffe and Manohar, which is based on the canonical definition, and the alternative by Ji, which is based on the Belinfante improved one, have been revisited under light shed by Chen et al. leading to seminal works by Hatta, Wakamatsu, Leader, etc. In chiral physics as exemplified by the chiral vortical effect and applications to the relativistic nucleus–nucleus collisions, sometimes referred to as a relativistic extension of the Barnett and the Einstein–de Haas effects, such arguments of the angular momentum decomposition would be of crucial importance. We pay our special attention to the fermionic part in the canonical and the Belinfante conventions and discuss a difference between them, which is reminiscent of a classical example of Feynman’s angular momentum paradox. We point out its possible relevance to early-time dynamics in the nucleus–nucleus collisions, resulting in excess by the electromagnetic angular momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The spin identification in such a frame to drop spatial derivatives is emphasized by Yoshimasa Hidaka. Another physical constraint is the commutation relation, and this prescription would always give the correct commutation relation of the spin.

  2. 2.

    K. F. thanks Wojciech Florkowski and Hidetoshi Taya for simulating conversations on this point which seem not to be very consistent to each other, and thus we just refer to their review and original literature here.

References

  1. Fukushima, K., Pu, S., Qiu, Z.: Eddy magnetization from the chiral Barnett effect. Phys. Rev. A99, 032105 (2019). https://doi.org/10.1103/PhysRevA.99.032105. arXiv:1808.08016 [hep-ph]

  2. Barnett, S.J.: Gyromagnetic and electron-inertia effects. Rev. Mod. Phys. 7, 129–166 (1935). https://doi.org/10.1103/RevModPhys.7.129

  3. Barnett, S.M.: Relativistic electron vortices. Phys. Rev. Lett. 118, 114802 (2017). https://doi.org/10.1103/PhysRevLett.118.114802

  4. Tomonaga, S., Oka, T.: The Story of Spin. University of Chicago Press (1998)

    Google Scholar 

  5. Leader, E., Lorcé, C.: The angular momentum controversy: what’s it all about and does it matter? Phys. Rept. 541, 163–248 (2014). https://doi.org/10.1016/j.physrep.2014.02.010. arXiv:1309.4235 [hep-ph]

  6. Wakamatsu, M.: Is gauge-invariant complete decomposition of the nucleon spin possible? Int. J. Mod. Phys. A29, 1430012 (2014). https://doi.org/10.1142/S0217751X14300129. arXiv:1402.4193 [hep-ph]

  7. Florkowski, W., Ryblewski, R., Kumar, A.: Relativistic hydrodynamics for spin-polarized fluids. Prog. Part. Nucl. Phys. 108, 103709 (2019). https://doi.org/10.1016/j.ppnp.2019.07.001. arXiv:1811.04409 [nucl-th]

  8. Hattori, K., Hongo, M., Huang, X.-G., Matsuo, M., Taya, H.: Fate of spin polarization in a relativistic fluid: an entropy-current analysis. Phys. Lett. B795, 100–106 (2019). https://doi.org/10.1016/j.physletb.2019.05.040. arXiv:1901.06615 [hep-th]

  9. Becattini, F., Tinti, L.: Thermodynamical inequivalence of quantum stress-energy and spin tensors. Phys. Rev. D84, 025013 (2011). https://doi.org/10.1103/PhysRevD.84.025013. arXiv:1101.5251 [hep-th]

  10. Becattini, F., Tinti, L.: Nonequilibrium thermodynamical inequivalence of quantum stress-energy and spin tensors. Phys. Rev. D87(2), 025029 (2013). https://doi.org/10.1103/PhysRevD.87.025029. arXiv:1209.6212 [hep-th]

  11. Becattini, F., Florkowski, W., Speranza, E.: Spin tensor and its role in non-equilibrium thermodynamics. Phys. Lett. B789, 419–425 (2019). https://doi.org/10.1016/j.physletb.2018.12.016. arXiv:1807.10994 [hep-th]

  12. Berry, M.V.: Optical currents. J. Opt. A: Pure Appl. Opt. 11, 094001 (2009). https://doi.org/10.1088/1464-4258/11/9/094001

  13. Chen, X.-S., Lu, X.-F.,Sun, W.-M. , Wang, F., Goldman, T.: Spin and orbital angular momentum in gauge theories: Nucleon spin structure and multipole radiation revisited. Phys. Rev. Lett. 100, 232002 (2008). https://doi.org/10.1103/PhysRevLett.100.232002. arXiv:0806.3166 [hep-ph]

  14. Cameron, R.P., Barnett, S.M., Yao, A.M.: Optical helicity, optical spin and related quantities in electromagnetic theory. New J. Phys. 14, 053050 (2012). https://doi.org/10.1088/1367-2630/14/5/053050

  15. Wakamatsu, M.: On gauge-invariant decomposition of nucleon spin. Phys. Rev. D81, 114010 (2010). https://doi.org/10.1103/PhysRevD.81.114010. arXiv:1004.0268 [hep-ph]

  16. Leader, E.: The photon angular momentum controversy: resolution of a conflict between laser optics and particle physics. Phys. Lett. B756, 303–308 (2016). https://doi.org/10.1016/j.physletb.2016.03.023. arXiv:1510.03293 [hep-ph]

  17. Hatta, Y.: Gluon polarization in the nucleon demystified. Phys. Rev. D84, 041701 (2011). https://doi.org/10.1103/PhysRevD.84.041701. arXiv:1101.5989 [hep-ph]

  18. Lorcé, C.: Wilson lines and orbital angular momentum. Phys. Lett. B719, 185–190 (2013). https://doi.org/10.1016/j.physletb.2013.01.007. arXiv:1210.2581 [hep-ph]

  19. Wakamatsu, M., Kitadono, Y., Zhang, P.-M.: The issue of gauge choice in the Landau problem and the physics of canonical and mechanical orbital angular momenta. Ann. Phys. 392, 287–322 (2018). https://doi.org/10.1016/j.aop.2018.03.019. arXiv:1709.09766 [hep-ph]

  20. Greenshields, C.R., Stamps, R.L., Franke-Arnold, S., Barnett, S.M.: Is the angular momentum of an electron conserved in a uniform magnetic field? Phys. Rev. Lett. 113, 240404 (2014). https://doi.org/10.1103/PhysRevLett.113.240404

  21. Lombardi, G.: Feynman’s disk paradox. Am. J. Phys. 51, 213–214 (1983). https://doi.org/10.1119/1.13272

  22. Higbie, J.: Angular momentum in the field of an electron. Am. J. Phys. 56, 378–379 (1988). https://doi.org/10.1119/1.15597

  23. Damski, B.: Electromagnetic angular momentum of the electron: one-loop studies. Nucl. Phys. B949, 114828 (2019). https://doi.org/10.1016/j.nuclphysb.2019.114828

  24. Jiang, Y., Lin, Z.-W., Liao, J.: Rotating quark-gluon plasma in relativistic heavy ion collisions. Phys. Rev. C94, 044910 (2016). https://doi.org/10.1103/PhysRevC.94.044910, https://doi.org/10.1103/PhysRevC.95.049904. arXiv:1602.06580 [hep-ph]. [Erratum: Phys. Rev.C95,no.4,049904(2017)]

  25. STAR Collaboration, Adamczyk, L., et al.: Global \(\Lambda \) hyperon polarization in nuclear collisions: evidence for the most vortical fluid. Nature 548, 62–65 (2017). https://doi.org/10.1038/nature23004. arXiv:1701.06657 [nucl-ex]

  26. Guo, X., Liao, J., Wang, E.: Magnetic field in the charged subatomic swirl. arXiv:1904.04704 [hep-ph]

  27. Kawaguchi, Y., Saito, H., Ueda, M.: Einstein–de Haas effect in dipolar Bose-Einstein condensates. Phys. Rev. Lett. 96, 080405 (2006). https://doi.org/10.1103/PhysRevLett.96.080405

  28. Ebling, U., Ueda, M.: Einstein-de Haas effect in a dipolar Fermi gas. arXiv:1701.05446 [cond-mat.quant-gas]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Fukushima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fukushima, K., Pu, S. (2021). Relativistic Decomposition of the Orbital and the Spin Angular Momentum in Chiral Physics and Feynman’s Angular Momentum Paradox. In: Becattini, F., Liao, J., Lisa, M. (eds) Strongly Interacting Matter under Rotation. Lecture Notes in Physics, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-030-71427-7_12

Download citation

Publish with us

Policies and ethics