Skip to main content

QCD Phase Structure Under Rotation

  • Chapter
  • First Online:
Strongly Interacting Matter under Rotation

Part of the book series: Lecture Notes in Physics ((LNP,volume 987))

Abstract

We give an introduction to the phase structure of QCD matter under rotation based on effective four-fermion models. The effects of the magnetic field on the rotating QCD matter are also explored. Recent developments along these directions are overviewed, with special emphasis on the chiral phase transition. The rotational effects on pion condensation and color superconductivity are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To specify the terminology, any non-Minkowski metric with either zero or nonzero Riemann curvature is referred to as a “curved spacetime”.

References

  1. Fukushima, K., Hatsuda, T.: Rept. Prog. Phys. 74 (2011). arXiv:1005.4814 [hep-ph]

  2. Alford, M.G., Schmitt, A., Rajagopal, K., Schafer, T.: Rev. Mod. Phys. 80, 1455 (2008). arXiv:0709.4635 [hep-ph]

  3. Bzdak, A., Esumi, S., Koch, V., Liao, J., Stephanov, M., Xu, N.: Phys. Rept. 853, 1–87 (2020). arXiv:1906.00936 [nucl-th]

  4. Hattori, K., Huang, X.G.: Nucl. Sci. Tech. 28, 26 (2017). arXiv:1609.00747 [nucl-th]

  5. Huang, X.G.: Rept. Prog. Phys. 79 (2016). arXiv:1509.04073 [nucl-th]

  6. Kharzeev, D.E., Liao, J., Voloshin, S.A., Wang, G.: Prog. Part. Nucl. Phys. 88, 1–28 (2016). https://doi.org/10.1016/j.ppnp.2016.01.001. arXiv:1511.04050 [hep-ph]

  7. Gusynin, V.P., Miransky, V.A., Shovkovy, I.A.: Phys. Rev. Lett. 73, 3499 (1994) Erratum: [Phys. Rev. Lett. 76, 1005 (1996)] [hep-ph/9405262]

    Google Scholar 

  8. Gusynin, V.P., Miransky, V.A., Shovkovy, I.A.: Nucl. Phys. B 462, 249 (1996). [hep-ph/9509320]

    Google Scholar 

  9. Bali, G.S., Bruckmann, F., Endrodi, G., Fodor, Z., Katz, S.D., Krieg, S., Schafer, A., Szabo, K.K.: JHEP 1202, 044 (2012). arXiv:1111.4956 [hep-lat]

  10. Bali, G.S., Bruckmann, F., Endrodi, G., Fodor, Z., Katz, S.D., Schafer, A.: Phys. Rev. D 86 (2012). arXiv:1206.4205 [hep-lat]

  11. Andersen, J.O., Naylor, W.R., Tranberg, A.: Rev. Mod. Phys. 88 (2016). arXiv:1411.7176 [hep-ph]

  12. Miransky, V.A., Shovkovy, I.A.: Phys. Rept. 576, 1 (2015). arXiv:1503.00732 [hep-ph]

  13. Adamczyk, L., et al.: STAR Collaboration. Nature 548, 62 (2017). arXiv:1701.06657 [nucl-ex]

    Article  ADS  Google Scholar 

  14. Adam, J., et al.: STAR Collaboration. Phys. Rev. C 98 (2018). arXiv:1805.04400 [nucl-ex]

  15. Adam, J., et al., [STAR Collaboration]: Phys. Rev. Lett. 123(13), 132301 (2019). arXiv:1905.11917 [nucl-ex]

  16. Deng, W.T., Huang, X.G.: Phys. Rev. C 93 (2016). arXiv:1603.06117 [nucl-th]

  17. Jiang, Y., Lin, Z.W., Liao, J.: Phys. Rev. C 94, 044910 (2016) Erratum: [Phys. Rev. C 95, no. 4, 049904 (2017)]. arXiv:1602.06580 [hep-ph]

  18. Shi, S., Li, K., Liao, J.: Phys. Lett. B 788, 409–413 (2019). arXiv:1712.00878 [nucl-th]

  19. Deng, X.G., Huang, X.G., Ma, Y.G., Zhang, S.: Phys. Rev. C 101 (2020). arXiv:2001.01371 [nucl-th]

  20. Vilenkin, A.: Phys. Rev. D 20, 1807 (1979)

    Google Scholar 

  21. Erdmenger, J., Haack, M., Kaminski, M., Yarom, A.: JHEP 0901, 055 (2009). arXiv:0809.2488 [hep-th]

  22. Banerjee, N., Bhattacharya, J., Bhattacharyya, S., Dutta, S., Loganayagam, R., Surowka, P.: JHEP 1101, 094 (2011). arXiv:0809.2596 [hep-th]

  23. Son, D.T., Surowka, P.: Phys. Rev. Lett. 103 (2009). arXiv:0906.5044 [hep-th]

  24. Kharzeev, D.E., McLerran, L.D., Warringa, H.J.: Nucl. Phys. A 803, 227 (2008). arXiv:0711.0950 [hep-ph]

  25. Fukushima, K., Kharzeev, D.E., Warringa, H.J.: Phys. Rev. D 78 (2008). arXiv:0808.3382 [hep-ph]

  26. Liang, Z.T., Wang, X.N.: Phys. Rev. Lett. 94, 102301 (2005). Erratum: [Phys. Rev. Lett. 96, 039901 (2006)] [nucl-th/0410079]

    Google Scholar 

  27. Liang, Z.T., Wang, X.N.: Phys. Lett. B 629, 20–26 (2005). arXiv:nucl-th/0411101

  28. Huang, X.G., Liao, J., Wang, Q., Xia, X.L.: in this volume

    Google Scholar 

  29. Gao, J.H., Liang, Z.T., Wang, Q., Wang, X.N.: in this volume. arXiv:2009.04803 [nucl-th]

  30. Becattini, F.: in this volume. arXiv:2004.04050 [hep-th]

  31. Liu, Y.C., Huang, X.G.: Nucl. Sci. Tech. 31, 56 (2020). arXiv:2003.12482 [nucl-th]

  32. Becattini, F., Lisa, M.A.: (2020). arXiv:2003.03640 [nucl-ex]

  33. Yamamoto, A., Hirono, Y.: Phys. Rev. Lett. 111 (2013). arXiv:1303.6292 [hep-lat]

  34. Chen, H.L., Fukushima, K., Huang, X.G., Mameda, K.: Phys. Rev. D 93 (2016). arXiv:1512.08974 [hep-ph]

  35. Jiang, Y., Liao, J.: Phys. Rev. Lett. 117 (2016). arXiv:1606.03808 [hep-ph]

  36. Ebihara, S., Fukushima, K., Mameda, K.: Phys. Lett. B 764, 94 (2017). arXiv:1608.00336 [hep-ph]

  37. Huang, X.G., Nishimura, K., Yamamoto, N.: JHEP 1802, 069 (2018). arXiv:1711.02190 [hep-ph]

  38. Chernodub, M.N., Gongyo, S.: JHEP 1701, 136 (2017). arXiv:1611.02598 [hep-th]

  39. Chernodub, M.N., Gongyo, S.: Phys. Rev. D 95 (2017). arXiv:1702.08266 [hep-th]

  40. Chernodub, M.N., Gongyo, S.: Phys. Rev. D 96 (2017). arXiv:1706.08448 [hep-th]

  41. Liu, Y., Zahed, I.: Phys. Rev. D 98 (2018). arXiv:1710.02895 [hep-ph]

  42. Liu, Y., Zahed, I.: Phys. Rev. Lett. 120 (2018). arXiv:1711.08354 [hep-ph]

  43. Zhang, H., Hou, D., Liao, J.: (2020). arXiv:1812.11787 [hep-ph]

  44. Wang, X., Wei, M., Li, Z., Huang, M.: Phys. Rev. D 99 (2019). arXiv:1808.01931 [hep-ph]

  45. Wang, L., Jiang, Y., He, L., Zhuang, P.: Phys. Rev. C 100 (2019). arXiv:1901.00804 [nucl-th]

  46. Wang, L., Jiang, Y., He, L., Zhuang, P.: Phys. Rev. D 100 (2019). arXiv:1901.04697 [nucl-th]

  47. Chen, H.L., Huang, X.G., Mameda, K.: arXiv:1910.02700 [nucl-th]

  48. Cao, G., He, L.: Phys. Rev. D 100 (2019). arXiv:1910.02728 [nucl-th]

  49. Zhang, Z., Shi, C., Luo, X., Zong, H.S.: Phys. Rev. D 101 (2020). arXiv:2003.03765 [nucl-th]

  50. Zhang, Z., Shi, C., Luo, X., Zong, H.S.: Phys. Rev. D 102 (2020). arXiv:2006.00677 [math-ph]

  51. Cao, G.: arXiv:2008.08321 [nucl-th]

  52. Mueller, B., Schaefer, A.: Phys. Rev. D 98 (2018). arXiv:1806.10907 [hep-ph]

  53. Guo, Y., Shi, S., Feng, S., Liao, J.: Phys. Lett. B 798 (2019). arXiv:1905.12613 [nucl-th]

  54. Guo, X., Liao, J., Wang, E.: Sci. Rep. 10, 2196 (2020). arXiv:1904.04704 [hep-ph]

  55. Parker, L., Toms, D.: Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  56. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  57. Klevansky, S.P.: Rev. Mod. Phys. 64, 649 (1992)

    Google Scholar 

  58. Hatsuda, T., Kunihiro, T.: Phys. Rept. 247, 221 (1994). [hep-ph/9401310]

    Google Scholar 

  59. Buballa, M.: Phys. Rept. 407, 205 (2005). [hep-ph/0402234]

    Google Scholar 

  60. Ambrus, V.E., Winstanley, E.: Phys. Lett. B 734, 296 (2014). arXiv:1401.6388 [hep-th]

  61. Ambrus, V.E., Winstanley, E.: in this volume. arXiv:1908.10244 [hep-th]

  62. Ambrus, V.E., Winstanley, E.: Phys. Rev. D 93 (2016). arXiv:1512.05239 [hep-th]

  63. Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B., Weisskopf, V.F.: Phys. Rev. D 9, 3471 (1974)

    Google Scholar 

  64. Giordano, C., Laforgia, A.: J. Comput. Appl. Math. 9, 221 (1983)

    Google Scholar 

  65. Mameda, K., Yamamoto, A.: PTEP 2016, 093B05 (2016). arXiv:1504.05826 [hep-th]

  66. Gorbar, E.V., Miransky, V.A., Shovkovy, I.A.: Phys. Rev. D 83 (2011). arXiv:1101.4954 [hep-ph]

  67. Preis, F., Rebhan, A., Schmitt, A.: Lect. Notes Phys. 871, 51 (2013). arXiv:1208.0536 [hep-ph]

  68. Chen, H.L., Fukushima, K., Huang, X.G., Mameda, K.: Phys. Rev. D 96 (2017). arXiv:1707.09130 [hep-ph]

  69. Cao, G., Huang, X.G.: Phys. Lett. B 757, 1 (2016). arXiv:1509.06222 [hep-ph]

    Article  ADS  Google Scholar 

  70. Wang, L., Cao, G., Huang, X.G., Zhuang, P.: Phys. Lett. B 780, 273 (2018). arXiv:1801.01682 [nucl-th]

    Article  ADS  Google Scholar 

  71. Brauner, T., Yamamoto, N.: JHEP 1704, 132 (2017). arXiv:1609.05213 [hep-ph]

    Article  ADS  Google Scholar 

  72. Nishimura, K., Yamamoto, N.: JHEP 07, 196 (2020). arXiv:2003.13945 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Kenji Fukushima, Defu Hou, Kazuya Mameda, Kentaro Nishimura, Yin Jiang, Naoki Yamamoti, and Hui Zhang for collaborations. This work is supported in part by the NSFC Grants No. 11535012 and No. 11675041, as well as by the NSF Grant No. PHY-1913729 and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Guang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, HL., Huang, XG., Liao, J. (2021). QCD Phase Structure Under Rotation. In: Becattini, F., Liao, J., Lisa, M. (eds) Strongly Interacting Matter under Rotation. Lecture Notes in Physics, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-030-71427-7_11

Download citation

Publish with us

Policies and ethics