Skip to main content

Connecting Theory to Heavy Ion Experiment

  • Chapter
  • First Online:
Strongly Interacting Matter under Rotation

Part of the book series: Lecture Notes in Physics ((LNP,volume 987))

  • 734 Accesses

Abstract

Only a fraction of all \(\Lambda \) and \(\bar{\Lambda }\) hyperons detected in heavy ion collisions are produced from the hot and dense matter directly at the hadronization. These hyperons are called the primary hyperons. The rest of the hyperons are products of the decays of heavier hyperon states, which in turn are produced at the hadronization. As such, the polarization of only primary hyperons can be described with the formulae introduced in Sect. 8. For the rest of the hyperons, the polarization transfer in the decays has to be computed, and convoluted with the polarization of the mother hyperon. In this chapter, a derivation of the polarization transfer coefficients, as well as the computation of the mean polarization of all \(\Lambda \) hyperons detected in the experiment, is presented. The chapter is concluded with the calculation of the resonance contributions to the global and local \(\Lambda \) polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the rest frame, helicity coincides with the eigenvalue of the spin operator \(\widehat{S}\), conventionally \(\widehat{S}_3\); see the textbooks.

  2. 2.

    In the non-polarized case, \(P_m\) is the same for any \(m\in [-j,\dots ,j]\).

  3. 3.

    For brevity, the summation convention is assumed: If an angular momentum component index (only for superscripts and subscripts) shows more than once in the formula, the index should be summed over. For example, we should sum over m in the numerator of (10.48) and over \(m,\lambda _\Lambda \) and \(\lambda _X\) in the denominator as \(|D^j(\phi ,\theta ,0)^{m}_{\lambda }|^2=D^j(\phi ,\theta ,0)^{m \, *}_{\lambda _\Lambda -\lambda _X}D^j(\phi ,\theta ,0)^{m}_{\lambda _\Lambda -\lambda _X}\).

References

  1. Becattini, F., Karpenko, I., Lisa, M., Upsal, I., Voloshin, S.: Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down. Phys. Rev. C 95(5), 054902 (2017)

    Article  ADS  Google Scholar 

  2. Karpenko I., Becattini F.: Study of \(\Lambda \) polarization in relativistic nuclear collisions at \(\sqrt{s_{\rm NN}}=7.7\) -200 GeV. Eur. Phys. J. C 77(4), 213 (2017)

    Google Scholar 

  3. Becattini, F., Karpenko, I.: Collective longitudinal polarization in relativistic heavy-ion collisions at very high energy. Phys. Rev. Lett. 120(1), 012302 (2018)

    Google Scholar 

  4. Xia, X.L., Li, H., Tang, Z.B., Wang, Q.: Probing vorticity structure in heavy-ion collisions by local \(\Lambda \) polarization. Phys. Rev. C 98, (2018)

    Article  ADS  Google Scholar 

  5. Florkowski, W., Kumar, A., Ryblewski, R., Mazeliauskas, A.: Longitudinal spin polarization in a thermal model. Phys. Rev. C 100, 054907 (2019)

    Google Scholar 

  6. Niida, T.: [STAR Collaboration]: Global and local polarization of \(\Lambda \) hyperons in Au+Au collisions at 200 GeV from STAR. Nucl. Phys. A 982, 511 (2019)

    Article  ADS  Google Scholar 

  7. Adam, J., et al.: [STAR Collaboration]: Polarization of \(\Lambda \) (\(\bar{\Lambda }\)) hyperons along the beam direction in Au+Au collisions at \(\sqrt{s_{_{NN}}} = 200\) GeV. Phys. Rev. Lett. 123, 132301 (2019)

    Google Scholar 

  8. Becattini, F., Cao, G., Speranza, E.: Polarization transfer in hyperon decays and its effect in relativistic nuclear collisions. Eur. Phys. J. C 79(9), 741 (2019)

    Google Scholar 

  9. Xia, X.L., Li, H., Huang, X.G., Huang, H.Z: Feed-down effect on \(\Lambda \) spin polarization. Phys. Rev. C 100, 014913 (2019)

    Google Scholar 

  10. Moussa, P., Stora, R.: Angular analysis of elementary particle reactions. In: Proceedings of the 1966 International School on Elementary Particles, Hercegnovi. Gordon and Breach, New York/London (1968)

    Google Scholar 

  11. Weinberg, S.: The Quantum Theory of Fields, vol. I. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  12. Tung, W.K.: Group Theory in Physics. World Scientific, Singapore (1985)

    Book  Google Scholar 

  13. Chung, S.U.: Spin Formalisms. BNL preprint Report No. BNLQGS- 02-0900. Brookhaven National Laboratory, Upton, 2008. Updated version of CERN 71-8

    Google Scholar 

  14. Cha, M.H., Sucher, J.: Phys. Rev. 140, B668 (1965)

    Article  ADS  Google Scholar 

  15. Armenteros, R., et al.: Nucl. Phys. B 21, 15 (1970)

    Article  ADS  Google Scholar 

  16. Lin, Qg, Ka, X.L.: On the correction to an operator formula. Coll. Phys. 21(12) (2002)

    Google Scholar 

  17. Leader, E.: Spin in Particle Physics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  18. Kim, J., Lee, J., Shim, J.S., Song, H.S.: Polarization effects in spin 3/2 hyperon decay. Phys. Rev. D 46, 1060 (1992)

    Article  ADS  Google Scholar 

  19. Becattini, F., Steinheimer, J., Stock, R., Bleicher, M.: Hadronization conditions in relativistic nuclear collisions and the QCD pseudo-critical line. Phys. Lett. B 764, 241 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Tanabashi, M., et al.: [Particle Data Group]: Review of particle physics. Phys. Rev. D 98(3), 030001 (2018)

    Google Scholar 

  21. Becattini F., et al.: A study of vorticity formation in high energy nuclear collisions. Eur. Phys. J. C 75(9), 406 (2015)

    Google Scholar 

  22. Wu, H.Z., Pang, L.G., Huang, X.G., Wang, Q.: Local spin polarization in high energy heavy ion collisions. Phys. Rev. Res. 1, 033058 (2019)

    Google Scholar 

  23. Kolb, P.F., Huovinen, P., Heinz, U.W., Heiselberg, H.: Elliptic flow at SPS and RHIC: from kinetic transport to hydrodynamics. Phys. Lett. B 500, 232 (2001)

    Google Scholar 

  24. Lin, Zw, Ko, C.M.: Partonic effects on the elliptic flow at RHIC. Phys. Rev. C 65, 034904 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoqing Cao .

Editor information

Editors and Affiliations

Appendices

Appendix 1 Lorentz Boost and Jacobian Determinant

In this Appendix, we demonstrate details to derive (10.79) and (10.81) shown in Sect. 10.5. As mentioned in the context, \(p^\mu _\Lambda =(\varepsilon _\Lambda , \mathbf{p }_\Lambda )\) and \(p_*^\mu =(\varepsilon _{\Lambda *} , \mathbf{p }_*)\) are the four-momenta of \(\Lambda \) in the QGP frame and Mother’s rest frame, respectively, and \(p_H^\mu =(\varepsilon _H, \mathbf{p }_H)\) the four-momentum of the Mother in QGPF. The pure Lorentz boost transforming the momentum of \(\Lambda \) from QGPF to MRF reads

$$\begin{aligned} \varepsilon _{\Lambda *}={}&\gamma _H(\varepsilon _\Lambda -\mathbf{v }_H\cdot \mathbf{p }_\Lambda ), \end{aligned}$$
(10.103)
$$\begin{aligned} \mathbf{p }_* = {}&\mathbf{p }_\Lambda + \left( \frac{\gamma _H -1}{\mathbf{v }_H^2}\mathbf{v }_H \cdot \mathbf{p }_\Lambda - \gamma _H~\varepsilon _\Lambda \right) \mathbf{v }_H , \end{aligned}$$
(10.104)

where \(\mathbf{v }_H=\mathbf{p }_H/\varepsilon _H\) is the velocity of the Mother and \(\gamma _H=\varepsilon _H/m_H\) the corresponding Lorentz factor. Hence, the explicit forms of (10.103) and (10.104) are

$$\begin{aligned} \varepsilon _{\Lambda *}={}&{1\over m_H} (\varepsilon _H\varepsilon _\Lambda - \mathbf{p }_H\cdot \mathbf{p }_\Lambda ), \end{aligned}$$
(10.105)
$$\begin{aligned} \mathbf{p }_* = {}&\mathbf{p }_\Lambda + \left[ \frac{\mathbf{p }_H\cdot \mathbf{p }_\Lambda }{m_H (\varepsilon _H + m_H)} -\frac{\varepsilon _\Lambda }{m_H} \right] \mathbf{p }_H, \end{aligned}$$
(10.106)

then the expression of \(\mathbf{p }_H\cdot \mathbf{p }_\Lambda \) from (10.105) can be substituted into (10.106) to get

$$\begin{aligned} \mathbf{p }_* = \mathbf{p }_\Lambda + \left[ \frac{\varepsilon _H\varepsilon _\Lambda - m_H \varepsilon _{\Lambda *}}{m_H(\varepsilon _H+m_H)} -\frac{\varepsilon _\Lambda }{m_H} \right] \mathbf{p }_H = \mathbf{p }_\Lambda - \frac{\varepsilon _{\Lambda *} + \varepsilon _\Lambda }{\varepsilon _H+m_H}\mathbf{p }_H. \end{aligned}$$
(10.107)

Moving \(\mathbf{p }_\Lambda \) to the left-hand side of (10.107) and take square of both sides, we have

$$\begin{aligned} (\mathbf{p }_* - \mathbf{p }_\Lambda )^2=\frac{(\varepsilon _{\Lambda *} + \varepsilon _\Lambda )^2}{(\varepsilon _H+m_H)^2}\mathbf{p }_H^2 = \frac{\varepsilon _H-m_H}{\varepsilon _H+m_H}(\varepsilon _{\Lambda *} + \varepsilon _\Lambda )^2, \end{aligned}$$
(10.108)

which then gives the energy of the Mother in terms of the energy-momenta of the Daughter as

$$\begin{aligned} \varepsilon _H=m_H \frac{(\varepsilon _{\Lambda *} + \varepsilon _\Lambda )^2 + (\mathbf{p }_* - \mathbf{p }_\Lambda )^2}{(\varepsilon _{\Lambda *} + \varepsilon _\Lambda )^2 - (\mathbf{p }_* - \mathbf{p }_\Lambda )^2}. \end{aligned}$$
(10.109)

By substituting (10.109) back into (10.107), the final expression for the momentum of the Mother follows directly

$$\begin{aligned} \mathbf{p }_H= 2m_H \frac{\varepsilon _+\mathbf{p }_-}{\varepsilon _+^2- \mathbf{p }_-^2} \quad \text {with}\quad \varepsilon _+=\varepsilon _\Lambda +\varepsilon _{\Lambda *}, \quad \mathbf{p }_-=\mathbf{p }_\Lambda -\mathbf{p }_*. \end{aligned}$$
(10.110)

Now, the above equation (10.110) can be easily adopted to alter the integration variable involved in (10.78) from \(\mathbf{p }_H\) to \(\mathbf{p }_*\) by fixing \(\mathbf{p }_\Lambda \). The Jacobian matrix of the transformation can be evaluated as

$$\begin{aligned} \frac{\partial \mathrm{p}_{Hi}}{\partial \mathrm{p}_{*j}}=\frac{2m_H}{\varepsilon _+^2-\mathbf{p }_-^2} \left\{ \left[ \mathrm{p}_{- ,i}\frac{\mathrm{p}_{*j}}{\varepsilon _{\Lambda *}} - \varepsilon _+\delta _{ij} \right] -{2\varepsilon _+\mathrm{p}_{- ,i}\over \varepsilon _+^2-\mathbf{p }_-^2} \left[ \varepsilon _+\frac{\mathrm{p}_{*j}}{\varepsilon _{\Lambda *}} +\mathrm{p}_{- ,j} \right] \right\} \end{aligned}$$
(10.111)

for \(i,j=x,y,z\), and the determinant follows directly after some algebraic manipulations:

$$\begin{aligned} \left| \frac{\partial \mathbf{p }_H}{\partial \mathbf{p }_*} \right| = \frac{4m_H^3\varepsilon _+^2(\varepsilon _+^2+\mathbf{p }_-^2)}{\varepsilon _{\Lambda *}(\varepsilon _+^2-\mathbf{p }_-^2)^3}. \end{aligned}$$
(10.112)

Appendix 2 Integrands for the Transverse and Longitudinal Polarizations

Herein, we work out the integrands for the evaluations of the transverse and longitudinal components of the mean spin vector, fed down from the strong and EM decays. Taking the most complicated component \({S}_{\Lambda y}^{PC}(\mathbf{p }_*)\), along the total angular momentum, for example, inserting (10.82) into the second equation of (10.92) gives

$$\begin{aligned} {S}_{\Lambda y}^{PC}(\mathbf{p }_*)= & {} 2(g_0 + g_1 \cos \phi _H + g_2 \cos 2 \phi _H) \Big ( A + B \sin ^2 \phi _* \sin ^2 \theta _* \Big ) + B \Big ( f_2\sin 2 \phi _H\nonumber \\&\sin \phi _* \sin 2 \theta _* + (h_1 \sin \phi _H + h_2 \sin 2 \phi _H) \sin 2 \phi _* \sin ^2 \theta _* \Big ). \end{aligned}$$
(10.113)

Because \(h_1(\mathrm{P}_T,Y_H)\) and \(g_1(\mathrm{P}_T,Y_H)\) are odd functions of \(Y_H\) thus also of “\(\cos \theta _*\)” and all the trigonometric functions of the Mother in (10.85) are even functions of “\(\cos \theta _*\)”, the terms proportional to \(h_1\) and \(g_1\) do not contribute at all after integrating over \(\theta _*\). Likewise, the term proportional to \(f_2(\mathrm{P}_T,Y_H)\), which is an even function of “\(\cos \theta _*\)”, vanishes upon integration over \(\theta _*\) because the function \(\sin 2 \theta _*\) is odd. So we are left with

$$\begin{aligned} {S}_{\Lambda y}^{PC}(\mathbf{p }_*)=(g_0 + g_2 \cos 2 \phi _H) \left( F - B\cos 2\phi _*\sin ^2 \theta _* \right) + B\, h_2 \sin 2 \phi _H \sin 2 \phi _* \sin ^2 \theta _*, \end{aligned}$$
(10.114)

where \(F=2A+B\sin ^2 \theta _*\).

Inserting (10.85) and replacing \(\phi _*\) by \( \phi _\Lambda + \psi \), (10.114) becomes explicitly

$$\begin{aligned}&[g_0 + g_2 ({\mathcal {A}}\cos 2\phi _\Lambda - {\mathcal {B}}\sin 2\phi _\Lambda )] \left[ F - B(\cos 2\phi _\Lambda \cos 2\psi -\sin 2\phi _\Lambda \sin 2\psi )\sin ^2 \theta _* \right] \nonumber \\&+ B\, h_2({\mathcal {A}}\sin 2\phi _\Lambda +{\mathcal {B}}\cos 2\phi _\Lambda ) (\cos 2\phi _\Lambda \sin 2\psi +\sin 2\phi _\Lambda \cos 2\psi ) \sin ^2 \theta _*. \end{aligned}$$
(10.115)

Remember that any terms that are odd functions of “\(\cos \theta _*\)” or \(\psi \) vanish after solid angle integrations. Thus, by taking into account the even-oddness of the relevant functions listed in Table 10.2, the following terms are left:

$$\begin{aligned}&(g_0 + g_2 {\mathcal {A}}\cos 2\phi _\Lambda )(F - B\cos 2\phi _\Lambda \cos 2\psi \sin ^2 \theta _*) -g_2 {\mathcal {B}}B\sin ^22\phi _\Lambda \sin 2\psi \sin ^2 \theta _*\nonumber \\&+ {B} h_2({\mathcal {A}}\sin ^22\phi _\Lambda \cos 2\psi +{\mathcal {B}}\cos ^2 2\phi _\Lambda \sin 2\psi )\sin ^2 \theta _*. \end{aligned}$$
(10.116)

Finally, we adopt the double-angle relationships for the trigonometric functions:

$$\cos ^2x={1\over 2}(\cos 2x+1),\qquad \sin ^2x={1\over 2}(-\cos 2x+1)$$

to put the result (10.116) in harmonics of \(\phi _\Lambda \):

$$\begin{aligned} {S}_{\Lambda y}^{PC}(\mathbf{p }_*)= & {} \left[ g_0F+{B\over 2} (h_2-g_2) ({\mathcal {A}}\cos 2\psi +{\mathcal {B}}\sin 2\psi ) \sin ^2 \theta _*\right] \nonumber \\&-(g_0B\cos 2\psi \sin ^2 \theta _*-g_2F {\mathcal {A}})\cos 2\phi _\Lambda \nonumber \\&- {B\over 2} (h_2+g_2)({\mathcal {A}}\cos 2\psi -{\mathcal {B}}\sin 2\psi )\sin ^2 \theta _*\cos 4\phi _\Lambda . \end{aligned}$$
(10.117)

One finds that \(h_2\) and \(g_2\) terms give rise to contributions to both global and \(4\phi _\Lambda \) harmonic modes for the TLP \(P_y\).

Similarly, \(h_1,g_1\) and \(f_2\) do not contribute to the TLP \(P_x\) because the relevant terms in the integrand \({S}_{\Lambda x}^{PC}(\mathbf{p }_*)\) are also odd functions of “\(\cos \theta _*\)”. So by combining (10.82) and (10.85) with the first equation in (10.92), the integrand is explicitly

$$\begin{aligned} {S}_{\Lambda x}^{PC}(\mathbf{p }_*)= & {} h_2({\mathcal {A}} \sin 2 \phi _\Lambda + {\mathcal {B}} \cos 2 \phi _\Lambda )\Big ( F + {B} \cos 2 \phi _* \sin ^2 \theta _* \Big )\nonumber \\&+ B [g_0+g_2({\mathcal {A}} \cos 2 \phi _\Lambda - {\mathcal {B}} \sin 2 \phi _\Lambda )] \sin 2 \phi _* \sin ^2 \theta _*, \end{aligned}$$
(10.118)

which becomes

$$\begin{aligned}&h_2\left[ {\mathcal {A}} \sin 2 \phi _\Lambda \Big ( F + {B} \cos 2 \psi \cos 2 \phi _\Lambda \sin ^2 \theta _* \Big )-{B\over 2} {\mathcal {B}}\sin 2 \psi \sin 4 \phi _\Lambda \sin ^2 \theta _* \right] \nonumber \\&+ B \left[ (g_0+g_2{\mathcal {A}} \cos 2 \phi _\Lambda )\cos 2 \psi \sin 2 \phi _\Lambda -g_2 {{\mathcal {B}}\over 2}\sin 4\phi _\Lambda \sin 2 \psi \right] \sin ^2 \theta _* \end{aligned}$$
(10.119)

after replacing \(\phi _*\) by \( \phi _\Lambda + \psi \). And the double-angle relationships give

$$\begin{aligned} {S}_{\Lambda x}^{PC}(\mathbf{p }_*)= & {} (h_2F{\mathcal {A}}+g_0B\cos 2 \psi \sin ^2 \theta _*)\sin 2 \phi _\Lambda \nonumber \\&+{B\over 2}(h_2+g_2)({\mathcal {A}}\cos 2 \psi -{\mathcal {B}}\sin 2 \psi )\sin ^2 \theta _*\sin 4 \phi _\Lambda , \end{aligned}$$
(10.120)

where we recognize that the coefficient of the \(4\phi _\Lambda \) harmonic is opposite to that of \({S}_{\Lambda y}^{PC}(\mathbf{p }_*)\).

For the longitudinal component, \(g_0,g_2\), and \(h_2\) do not contribute because the relevant terms in the integrand \({S}_{\Lambda z}^{PC}(\mathbf{p }_*)\) are also odd functions of “\(\cos \theta _*\)”. So by combining (10.82) and (10.85) with the third equation in (10.92), the integrand is explicitly

$$\begin{aligned} {S}_{\Lambda z}^{PC}(\mathbf{p }_*)= & {} 2 f_2({\mathcal {A}} \sin 2 \phi _\Lambda + {\mathcal {B}} \cos 2 \phi _\Lambda )\Big (A + {B} \cos ^2 \theta _* \Big )+ B [h_1({\mathcal {C}} \sin \phi _\Lambda + {\mathcal {D}} \cos \phi _\Lambda )\nonumber \\&\cos \phi _*+g_1({\mathcal {C}} \cos \phi _\Lambda - {\mathcal {D}} \sin \phi _\Lambda )\sin \phi _*] \sin 2 \theta _*, \end{aligned}$$
(10.121)

which becomes

$$\begin{aligned} {S}_{\Lambda z}^{PC}(\mathbf{p }_*)=\left[ 2 f_2{\mathcal {A}}\Big (A + {B} \cos ^2 \theta _* \Big )+ {B\over 2} (h_1+g_1)({\mathcal {C}}\cos \psi - {\mathcal {D}} \sin \psi ) \sin 2 \theta _*\right] \sin 2 \phi _\Lambda \end{aligned}$$
(10.122)

after replacing \(\phi _*\) by \( \phi _\Lambda + \psi \). Note that the LLP keeps the same harmonic as the primary one without any other mixing, that is, \(\sim \sin 2 \phi _\Lambda \).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cao, G., Karpenko, I. (2021). Connecting Theory to Heavy Ion Experiment. In: Becattini, F., Liao, J., Lisa, M. (eds) Strongly Interacting Matter under Rotation. Lecture Notes in Physics, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-030-71427-7_10

Download citation

Publish with us

Policies and ethics