Skip to main content

Strongly Interacting Matter Under Rotation: An Introduction

  • Chapter
  • First Online:
Strongly Interacting Matter under Rotation

Part of the book series: Lecture Notes in Physics ((LNP,volume 987))

Abstract

Ultrarelativistic collisions between heavy nuclei briefly generate the Quark–Gluon Plasma (QGP), a new state of matter characterized by deconfined partons last seen microseconds after the Big Bang. The properties of the QGP are of intense interest, and a large community has developed over several decades, to produce, measure, and understand this primordial plasma. The plasma is now recognized to be a strongly coupled fluid with remarkable properties, and hydrodynamics is commonly used to quantify and model the system. An important feature of any fluid is its vorticity, related to the local angular momentum density; however, this degree of freedom has received relatively little attention because no experimental signals of vorticity had been detected. Thanks to recent high-statistics datasets from experiments with precision tracking and complete kinetic coverage at collider energies, hyperon spin polarization measurements have begun to uncover the vorticity of the QGP created at the Relativistic Heavy Ion Collider. The injection of this new degree of freedom into a relatively mature field of research represents an enormous opportunity to generate new insights into the physics of the QGP. The community has responded with enthusiasm, and this book represents some of the diverse lines of inquiry into aspects of strongly interacting matter under rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That the magnetization arose from spin polarization of the electrons was not known to Barnett and his contemporaries in 1915, as the concept of quantum spin was not introduced until nearly a decade later.

  2. 2.

    In principle, the magnitude \(|\mathbf {J}|\) of the collision’s angular momentum may be estimated as well. However, not all of this angular momentum is transferred to the plasma at midrapidity [4], so usually only the direction \(\hat{J}\) is of interest. This quantity is the only important ingredient to estimate vorticity in any event.

References

  1. Liang, Z.T., Wang, X.N.: Phys. Rev. Lett. 94 (2005). https://doi.org/10.1103/PhysRevLett.94.102301. [Erratum: Phys. Rev. Lett. 96, 039901 (2006)]

  2. Becattini, F., Piccinini, F., Rizzo, J.: Phys. Rev. C 77 (2008). https://doi.org/10.1103/PhysRevC.77.024906

  3. Becattini, F., Chandra, V., Del Zanna, L., Grossi, E.: Ann. Phys. 338, 32 (2013). https://doi.org/10.1016/j.aop.2013.07.004

    Article  ADS  Google Scholar 

  4. Jiang, Y., Lin, Z.W., Liao, J.: Phys. Rev. C 94(4) (2016). https://doi.org/10.1103/PhysRevC.94.044910, https://doi.org/10.1103/PhysRevC.95.049904. [Erratum: Phys. Rev. C95, no.4,049904(2017)]

  5. Adamczyk, L., et al.: Nature 548, 62 (2017). https://doi.org/10.1038/nature23004

    Article  ADS  Google Scholar 

  6. Liang, Z.T., Wang, X.N.: Phys. Lett. B 629, 20 (2005). https://doi.org/10.1016/j.physletb.2005.09.060

    Article  ADS  Google Scholar 

  7. Adams, J., et al.: Nucl. Phys. A 757, 102 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085

    Article  ADS  Google Scholar 

  8. Adcox, K., et al.: Nucl. Phys. A 757, 184 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086

    Article  ADS  Google Scholar 

  9. Back, B., et al.: Nucl. Phys. A 757, 28 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.084

    Article  ADS  Google Scholar 

  10. Arsene, I., et al.: Nucl. Phys. A 757, 1 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.130

    Article  ADS  Google Scholar 

  11. Barnett, S.J.: Phys. Rev. 6, 239 (1915). https://doi.org/10.1103/PhysRev.6.239. https://link.aps.org/doi/10.1103/PhysRev.6.239

  12. Takahashi, M., et al.: Nat. Phys. 12, 52 (2016). https://doi.org/10.1038/nphys3526

    Article  Google Scholar 

  13. Abelev, B., et al.: Phys. Rev. C 95 (2017). https://doi.org/10.1103/PhysRevC.95.039906

  14. Anderson, M., et al.: Nucl. Instrum. Meth. A499, 659 (2003). https://doi.org/10.1016/S0168-9002(02)01964-2

    Article  ADS  Google Scholar 

  15. Adams, J., et al.: Nucl. Instrum. Meth. A 968 (2020). https://doi.org/10.1016/j.nima.2020.163970

  16. Becattini, F., Lisa, M.A.: Ann. Rev. Nucl. Part. Sci. 70, 395 (2020). https://doi.org/10.1146/annurev-nucl-021920-095245

    Article  ADS  Google Scholar 

  17. Bzdak, A., Esumi, S., Koch, V., Liao, J., Stephanov, M., Xu, N.: Phys. Rept. 853, 1 (2020). https://doi.org/10.1016/j.physrep.2020.01.005

    Article  ADS  Google Scholar 

  18. Aggarwal, M., et al.: (2010)

    Google Scholar 

  19. Adam, J., et al.: Phys. Rev. Lett. 123(13) (2019). https://doi.org/10.1103/PhysRevLett.123.132301

  20. Zhou, C.: Nucl. Phys. A 982, 559 (2019). https://doi.org/10.1016/j.nuclphysa.2018.09.009

    Article  ADS  Google Scholar 

  21. Adam, J et al.: arXiv:2012.13601 (2020)

  22. Leader, E.: Spin Particle Phys. 15 (2011)

    Google Scholar 

  23. Schilling, K., Seyboth, P., Wolf, G.E.: Nucl. Phys. B 15, 397 (1970). https://doi.org/10.1016/0550-3213(70)90070-2. [Erratum: Nucl. Phys. B 18, 332 (1970)]

  24. Becattini, F., Karpenko, I., Lisa, M., Upsal, I., Voloshin, S.: Phys. Rev. C 95(5) (2017). https://doi.org/10.1103/PhysRevC.95.054902

  25. Acharya, S., et al.: Phys. Rev. Lett. 125(1) (2020). https://doi.org/10.1103/PhysRevLett.125.012301

  26. Sheng, X.L., Oliva, L., Wang, Q.: Phys. Rev. D 101(9) (2020). https://doi.org/10.1103/PhysRevD.101.096005

  27. Müller, B., Schäfer, A.: Phys. Rev. D 98(7) (2018). https://doi.org/10.1103/PhysRevD.98.071902

  28. Guo, X., Liao, J., Wang, E.: Sci. Rep. 10(1), 2196 (2020). https://doi.org/10.1038/s41598-020-59129-6

    Article  ADS  Google Scholar 

  29. Pang, L.G., Petersen, H., Wang, Q., Wang, X.N.: Phys. Rev. Lett. 117(19) (2016). https://doi.org/10.1103/PhysRevLett.117.192301

  30. Adam, J., et al.: arXiv:2007.14005 (2020)

Download references

Acknowledgements

This work is supported in part by U.S. Department of Energy grant DE-SC0020651 and by U.S. National Science Foundation grant PHY-1913729.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinfeng Liao or Michael Lisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Becattini, F., Liao, J., Lisa, M. (2021). Strongly Interacting Matter Under Rotation: An Introduction. In: Becattini, F., Liao, J., Lisa, M. (eds) Strongly Interacting Matter under Rotation. Lecture Notes in Physics, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-030-71427-7_1

Download citation

Publish with us

Policies and ethics