Skip to main content

Geographically Dispersed Supply Chains: A Strategy to Manage Cybersecurity in Industrial Networks Integration

  • Chapter
  • First Online:
Advances in Cybersecurity Management

Abstract

Large industries usually imply geographically dispersed supply chains composed of facilities localized in diverse regions. These facilities commonly involve operational technology (OT) (i.e., industrial control systems—ICS) and information technology (IT) infrastructures, which require integration to enable information processing. Such integration, achieved through cyber-physical systems, and leveraged by the Industry 4.0 emergence, may transform the industry and facilitate the transformation of vast data volumes into valuable information. Security risks posed by dispersed cyber-physical systems may be substantial, and dealing with cybersecurity issues in such context could be very expensive. This study reviews directives regarding cybersecurity risks in companies with dispersed supply chains and also applicable international cybersecurity standards and regulations to derive a strategy to manage cybersecurity in integrated industrial networks. The strategy proposes centralized services, optimized perimeter segregation, and data flow policies among OT and IT networks to balance the trade-off between a high level of protection with cost-effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Moura, R. L., Ceotto, L., & Gonzalez, A. (2017). Industrial IoT and advanced analytics framework: An approach for the mining industry. In Proc. International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 1308–1314). Las Vegas.

    Google Scholar 

  2. Griffor, E., Greer, C., Wollman, D. A., & Burns, M. J. (2017). Framework for cyber-physical systems: Volume 1. Overview (No. Special Publication (NIST SP)-1500-201).

    Google Scholar 

  3. de Moura, R. L., Ceotto, L., Gonzalez, A., & Toledo, R. (2018). Industrial Internet of Things (IIoT) platforms—An evaluation model. In International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 1002–1009). Las Vegas, USA.

    Google Scholar 

  4. Alguliyev, R., Imamverdiyev, Y., & Sukhostat, L. (2018). Cyber-physical systems and their security issues. Computers in Industry, 100, 212–223.

    Article  Google Scholar 

  5. Lee, J., Ardakani, H. D., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintenance & service innovation. Procedia Cirp, 38, 3–7.

    Article  Google Scholar 

  6. Bellagente, P., Ferrari, P., Flammini, A., Rinaldi, S., & Sisinni, E. (2016). Enabling PROFINET devices to work in IoT: Characterization and requirements. In Proc. IEEE International Instrumentation and Measurement Technology Conference Procedings (pp. 1–6). Taipei, Taiwan.

    Google Scholar 

  7. Andrews, S. K., Rajavarman, V. N., & Ramamoorthy, S. (2018). Implementing an Iot vehicular diagnostics system under a Rtos environment over Ethernet IP. Medico-Legal Update, 18(1), 548–554.

    Article  Google Scholar 

  8. Lavrov, K. G., Kolupaev, K. G., Kharlov, D. A., Tsikhotsky, A. S., & Kulik, Y. N. (2018). Development of FOUNDATION TM Fieldbus technology for coke oven plants. Coke and Chemistry, 61(7), 270–273.

    Article  Google Scholar 

  9. Mejías, A., Herrera, R., Márquez, M., Calderón, A., González, I., & Andújar, J. (2017). Easy handling of sensors and actuators over TCP/IP networks by open source hardware/software. Sensors, 17(1), 94.

    Article  Google Scholar 

  10. Ponomarev, S., & Atkison, T. (2015). Industrial control system network intrusion detection by telemetry analysis. IEEE Transactions on Dependable and Secure Computing, 13(2), 252–260.

    Article  Google Scholar 

  11. Hutchins, M. J., Bhinge, R., Micali, M. K., Robinson, S. L., Sutherland, J. W., & Dornfeld, D. (2015). Framework for identifying cybersecurity risks in manufacturing. Procedia Manufacturing, 1, 47–63. https://doi.org/10.1016/j.promfg.2015.09.060.

    Article  Google Scholar 

  12. Shukla, M., Johnson, S. D., & Jones, P. (2019). Does the NIS implementation strategy effectively address cybersecurity risks in the UK?. In Proc. International Conference on Cybersecurity and Protection of Digital Services (Cybersecurity) (pp. 1–11). Oxford, UK.

    Google Scholar 

  13. Conteh, N. Y., & Schmick, P. J. (2016). Cybersecurity: Risks, vulnerabilities and countermeasures to prevent social engineering attacks. International Journal of Advanced Computer Research, 6(23), 31.

    Article  Google Scholar 

  14. Turkulainen, V., Roh, J., Whipple, J. M., & Swink, M. (2017). Managing internal supply chain integration: Integration mechanisms and requirements. Journal of Business Logistics, 38(4), 290–309.

    Article  Google Scholar 

  15. Dadheech, K., Choudhary, A., & Bhatia, G. (2018). De-militarized zone: A next level to network security. In Proc. Second International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 595–600), Coimbatore.

    Google Scholar 

  16. Galloway, B., & Hancke, G. P. (2012). Introduction to industrial control networks. IEEE Communications Surveys & Tutorials, 15(2), 860–880.

    Article  Google Scholar 

  17. Lorentz, H., Töyli, J., Solakivi, T., Häline, H. M., & Ojala, L. (2012). Effects of geographic dispersion on intra-firm supply chain performance. Supply Chain Management: An International Journal, 17(6), 611–626.

    Article  Google Scholar 

  18. Chandia, R., Gonzalez, J., Kilpatrick, T., Papa, M., & Shenoi, S. (2007). “Security strategies for SCADA networks. In Proc. International Conference on Critical Infrastructure Protection (pp. 117–131). Springer, Boston, MA.

    Google Scholar 

  19. NCSC. National Cybersecurity Centre—“Cyber Assessment Framework (CAF)”. (2019). Retrieved August 2020, from https://www.ncsc.gov.uk/collection/caf

  20. Stouffer, K., Falco, J., & Scarfone, K. (2011). Guide to industrial control systems (ICS) security. NIST Special Publication, 800(82), 16–16.

    Google Scholar 

  21. Byres, E., Karsch, E., & Carter, J. (2005). NISCC good practice guide on firewall deployment for SCADA and process control networks. National Infrastructure Security Co-Ordination Centre, 2, 2005.

    Google Scholar 

  22. Hadley, M. D., Huston, K. A., & Edgar, T. W. (2007). AGA-12, Part 2 performance test results. Pacific Northwest National Laboratories.

    Google Scholar 

  23. API Standard 1164. (2004, September). Pipeline SCADA Security.

    Google Scholar 

  24. ISO/IEC 27002:2005. Information technology—Code of practice for information security management. June 2005 (Redesignation of ISO/IEC 17799:2005).

    Google Scholar 

  25. Zdravkovic, J., Stirna, J., Henkeland, M., & Grabis, J. (2013). Modeling business capabilities and context-dependent delivery by cloud services. In Proc. International Conference on Advanced Information Systems Engineering (pp. 369–383). Springer, Berlin, Heidelberg.

    Google Scholar 

  26. Miloslavskaya, N., & Tolstoy, A. (2016). Big data, fast data and data lake concepts. Procedia Computer Science, 88, 300–305.

    Article  Google Scholar 

  27. de Moura, R. L., Gonzalez, A., Franqueira, V. N., & Neto, A. (2020). A cyber-security strategy for internationally-dispersed industrial networks. In Proc. International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas, USA (In Press).

    Google Scholar 

  28. House, W. (2006). Homeland Security Presidential Directive 7 (HSPD-7): “Critical Infrastructure Identification, Prioritization, and Protection”.

    Google Scholar 

  29. Knapp, E. D., & Langill, J. T. (2014). Industrial Network Security: Securing critical infrastructure networks for smart grid, SCADA, and other Industrial Control Systems. Walthan, MA, EUA: Syngress.

    Google Scholar 

  30. ISA-95 Enterprise Control Systems. Retrieved Janauary 2020, from http://www.isa-95.com

  31. Igure, V. M., Laughter, S. A., & Williams, R. D. (2006). Security issues in SCADA networks. Computers & Security, 25(7), 498–506. https://doi.org/10.1016/j.cose.2006.03.001.

    Article  Google Scholar 

  32. Dzung, D., Naedele, M., Von Hoff, T. P., & Crevatin, M. (2005). Security for industrial communication systems. Proceedings of the IEEE, 93(6), 1152–1177.

    Article  Google Scholar 

  33. NERC Standard CIP-002 through -009. (2006, June). Cybersecurity. Retrieved August 2020, from http://www.nerc.com/files/Reliability_Standards_Complete_Set_21Jul08.pdf

  34. De la Rosa, D. M. (2001). Chemical facilities anti terrorism standards overview (No. SAND2011-2764C). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

    Google Scholar 

  35. US Nuclear Regulatory Commission. (2010). Cybersecurity programs for nuclear facilities. US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research.

    Google Scholar 

  36. Sepulveda, J., Flórez, D., Immler, V., Gogniat, G., & Sigl, G. (2017). Efficient security zones implementation through hierarchical group key management at NoC-based MPSoCs. Microprocessors and Microsystems, 50, 164–174.

    Article  Google Scholar 

  37. Rababah, B., Zhou, S., & Bader, M. (2018). Evaluation the Performance of DMZ. Assoc. Mod. Educ. Computer Science, 0–13.

    Google Scholar 

  38. Hummer, M., Kunz, M., Netter, M., et al. (2016). Adaptive identity and access management—Contextual data-based policies. EURASIP Journal on Information Security, 2016, 19.

    Article  Google Scholar 

  39. Ometov, A., Bezzateev, S., Mäkitalo, N., Andreev, S., Mikkonen, T., & Koucheryavy, Y. (2016). Multi-factor authentication: A survey. Cryptography, 2(1), 1.

    Article  Google Scholar 

  40. Kuipers, D., & Fabro, M. (2006). Control systems cybersecurity: Defense in-depth strategies (No. INL/EXT-06-11478). Idaho National Laboratory (INL).

    Google Scholar 

  41. Ward, C., Aggarwal, V., Buco, M., Olsson, E., & Weinberger, S. (2007). Integrated change and configuration management. IBM Systems Journal, 46(3), 459–478.

    Article  Google Scholar 

  42. Song, M., Kim, H. R., & Kim, H. K. (2016). Intrusion detection system based on the analysis of time intervals of can messages for in-vehicle network. In Proc. 2016 “International conference on information networking(ICOIN)” (pp. 63–68). IEEE, 2016, Conference Proceedings.

    Google Scholar 

  43. Shen, C., Liu, C., Tan, H., Wang, Z., Xu, D., & Su, X. (2018). Hybrid-augmented device fingerprinting for intrusion detection in industrial control system networks. IEEE Wireless Communications, 25(6), 26–31.

    Article  Google Scholar 

  44. Ponomarev, S., & Atkison, T. (2016). Industrial control system network intrusion detection by telemetry analysis. IEEE Transactions on Dependable and Secure Computing, 13(2), 252–260.

    Article  Google Scholar 

  45. Ahmad, F., Adnane, A., Franqueira, V. N. L., Kurugollu, F., & Liu, L. (2018). Man-in-the-middle attacks in vehicular ad-hoc networks: Evaluating the impact of attackers’ strategies. Sensors, 18(11), 4040. https://doi.org/10.3390/s18114040.

    Article  Google Scholar 

  46. IEC 62443, Industrial communication networks—“Network and system security”, IE C Std., many parts, closely related to ISA 99 Stds.

    Google Scholar 

  47. Schuba, C. L., Krsul, I. V., Kuhn, M. G., Spafford, E. H., Sundaram, A., & Zamboni, D. (1997). Analysis of a denial of service attack on TCP. In Proc. Proceedings. IEEE Symposium on Security and Privacy (Cat. No. 97CB36097) (pp. 208–223).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Luis de Moura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Moura, R.L., Gonzalez, A., Franqueira, V.N.L., Neto, A.L.M., Pessin, G. (2021). Geographically Dispersed Supply Chains: A Strategy to Manage Cybersecurity in Industrial Networks Integration. In: Daimi, K., Peoples, C. (eds) Advances in Cybersecurity Management. Springer, Cham. https://doi.org/10.1007/978-3-030-71381-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71381-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71380-5

  • Online ISBN: 978-3-030-71381-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics