Skip to main content

Oxic-dysoxic Tidal Flat Carbonates from Sadara, Pachham Island, Kachchh

  • Chapter
  • First Online:
Mesozoic Stratigraphy of India

Abstract

Sadara limestones in Goradonagar Formation of Pachham Island are dominantly intramicritic and contain bioclast, pellet, peloid, ooid; with nodular anhydrite. They exhibit intraformational chert breccia at the base, early diagenetic dolomite and predominant lime flake pebbles of intrabasinal origin in the middle, with development of algal laminated structures and desiccation cracks in the upper part; representing subtidal-intertidal-supratidal mudflat environment. Higher content of insoluble residue (av. 11.56%) and presence of illite, kaolinite, anhydrite, gypsum; indicate restricted circulation in coastal sabkha-like intertidal-supratidal zones. They exhibit higher CaO, low SiO2, Fe2O3, Al2O3, TiO2, K2O and P2O5. Trace element composition of these sediments reveals higher Na, lower Mn, Ni, Cu, Co, Pb, U, Th, Sr contents, V/Cr and Ni/Co ratios. These signatures, together with seawater like REE pattern with low ∑REE + Y content, LREE depletion, positive La, Eu and negative Gd, Y, Ce anomalies, (Nd/Yb) SN and Y/Ho in these limestones; substantiates shallow marine oxic-dysoxic nature with an insignificant terrigenous contribution. The δ13C (av. −1.06‰), δ18O (av. −5.06‰), Z values (av. > 120) support the shallow marine nature of these limestones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal SK, Pandey DK (1985) Biostratigraphy of the Bathonian-Callovian Beds of Goradongar in Patchham Island District Kachchh (Gujrat). Proc Indian Nat Sci Acad 51:887–903

    Google Scholar 

  • Alibo DS, Nozaki Y (1999) Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta 63:363–372

    Google Scholar 

  • Allwood AC, Kamber BS, Walter MR, Burch IW, Kanik I (2010) Trace elements record depositional history of an Early Archean stromatolitic carbonate platform. Chem Geol 270:148–163

    Google Scholar 

  • Alterman W, Herbig HG (1991) Tidal flat deposits of the Lower Proterozoic Campbell Group along the southwestern margin of the Kaapvaal craton, Northern Cape Province, South Africa. J African Earth Sci 13:415–435

    Google Scholar 

  • Andreeva PV (2015) Middle Devonian (Givetian) supratidal sabkha anhydrites from the Moesian Platform (Northeastern Bugaria). Carb Evap 30:439–449

    Google Scholar 

  • Armstrong-Altrin JS, Verma SP, Madhavaraju J, Lee YI, Ramasamy S (2003) Geochemistry of Upper Miocene Kudankulam Limestones, Southern India. Int Geol Rev 45:16–26

    Google Scholar 

  • Armstrong-Altrin JS, Madhavaraju J, Sial AN, Kasper-Zubillaga JJ, Nagarajan R, Flores-Castro K, Rodrigues JL (2011) Petrography and stable isotope geochemistry of the Cretaceous EI Abra Limestones (Actopan), Mexico: implication on diagenesis. J Geol Soc India 77:349–359

    Google Scholar 

  • Arora A, Banerjee S, Dutta S (2015) Black shale in late Jurassic Jhuran Formation of Kutch: possible indicator of oceanic anoxic event? J Geol Soc India 85:265–278

    Google Scholar 

  • Banerjee S, Bhattacharya SK, Sarkar S (2006) Carbon and oxygen isotope compositions of the carbonate facies in the Vindhyan Supergroup, central India. J Earth Sys Sci 115:113–134

    Google Scholar 

  • Bansal U, Banerjee S, Pande K, Arora A, Meena SS (2017) The distinctive compositional evolution of glauconite in the Cretaceous Ukra Hill Member (Kutch basin, India) and its implications. Mar Petrol Geol 82:97–117

    Google Scholar 

  • Bau M, Dulski P (1994) Evolution of Yttrium-Holmium systematics of seawater through time. In: Goldschmidt conference Edenburgh, pp 61–62

    Google Scholar 

  • Bau M, Dulski P (1996) Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sci Lett 143:245–255

    Google Scholar 

  • Bellanca A, Masetti D, Neri R (1997) Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): assessing REE sensitivity to environmental changes. Chem Geol 141:141–152

    Google Scholar 

  • Bellanca A, Masetti D, Neri R, Venezia F (1999) Geochemical and sedimentological evidence of productivity cycles recorded in Toarcian black shales from the Belluno Basin, Southern Alps, Northern Italy. J Sed Res 69:466–476

    Google Scholar 

  • Biswas SK (1977) Mesozoic rock-stratigraphy of Kachchh, Gujarat. Quart J Geol Min Met Soc India 49:1–32

    Google Scholar 

  • Biswas SK (1987) Regional tectonic framework, structure and evolution of Western margin basins of India. Tectonophysics 135:307–327

    Google Scholar 

  • Biswas SK (1991) Stratigraphy and sedimentary evolution of the Mesozoic Basin of Kachchh, Western India. In: Tandon SK, Pant CC, Casshyap SM (eds) Sedimentary basins of India, Tectonic context. Gyanodaya Prakashan, Nainital, pp 74–103

    Google Scholar 

  • Biswas SK (2005) A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes. Curr Sci 88:1592–1600

    Google Scholar 

  • Biswas SK (2016a) Mesozoic and tertiary stratigraphy of Kachchh (Kachchh)-a review. In: Thakkar MG (ed) Recent studies in the geology of Kachchh, Geol Soc India Spec Publ, vol 6, pp 1–24

    Google Scholar 

  • Biswas SK (2016b) Tectonic framework, structure and tectonic evolution of Kachchh Basin, Western India. In: Thakkar MG (ed) Recent studies in the geology of Kachchh, Geol Soc India Spec Publ, vol 6, pp 129–150

    Google Scholar 

  • Biswas SK, Deshpande SV (1970) Geological and tectonic maps of Kachchh. ONGC Bull 7:115–123

    Google Scholar 

  • Biswas SK, Deshpande SV (1973) A note on the mode of eruption of Deccan Trap lavas with special reference to Kachchh. J Geol Soc India 14:134–141

    Google Scholar 

  • Boggs S Jr (2009) Petrology of sedimentary rocks. Cambridge University Press 600

    Google Scholar 

  • Bouchette F, Séguret M, Moussine-Pouchkine A (2001) Coarse carbonate breccias as a result of water-wave cyclic loading (uppermost Jurassic–South-East Basin, France). Sedimentol 40:767–789

    Google Scholar 

  • Carozzi AV, Gerber MS (1978) Synsedimentary chert breccia: a Mississippian tempestite. J Sed Pet 48:705–708

    Google Scholar 

  • Chakraborti P (1980) A petrogenetic study of the Tirohan breccia, Karauli, Rajasthan. Indian J Earth Sci 7:57–63

    Google Scholar 

  • Chaudhuri A, Banerjee S, Le Pera E (2018) Petrography of Middle Jurassic to Early Cretaceous sandstones in the Kutch Basin, western India: Implications on provenance and basin evolution. J Palaeogeography 7:2–14

    Google Scholar 

  • Chaudhuri A, Banerjee S, Chauhan G (2020a) Compositional evolution of siliciclastic sediments recording the tectonic stability of a pericratonic rift: Mesozoic Kutch Basin, western India. Mar Pet Geol 111:476–495

    Google Scholar 

  • Chaudhuri A, Das K, Banerjee S, Fitzsimons ICW (2020b) Detrital zircon and monazite track the source of Mesozoic sediments in Kutch to rocks of Late Neoproterozoic and Early Palaeozoic orogenies in northern India. Gond Res 80:188–201

    Google Scholar 

  • Chaudhuri A, Chatterjee A, Banerjee S, Ray JS (2020c) Tracing multiple sources of sediments using trace element and Nd isotope geochemistry: provenance of the Mesozoic succession in the Kutch Basin, western India. Geol Mag. https://doi.org/10.1017/S0016756820000539

    Article  Google Scholar 

  • Chaudhuri A, Banerjee S, Prabhakar N, Das A (2020d) The use of heavy mineral chemistry in reconstructing provenance: a case study from Mesozoic sandstones of Kutch Basin (India). Geol J. https://doi.org/10.1002/gj.3922

    Article  Google Scholar 

  • Coimbra R, Immenhauser A, Oloriz F, Rodriguez-Galiano V, Chica-Olmo M (2015) New insights into geochemical behaviour in ancient marine carbonates (Upper Jurassic Ammonitico Rosso): novel proxies for interpreting sea-level dynamics and palaeoceanography. Sedimentol 62:266–302

    Google Scholar 

  • Corbin JC, Person A, Iatzoura A, Ferre B, Renard M (2000) Manganese in pelagic carbonates: indication of major tectonic events during the geodynamic evolution of a passive continental margin. Palaeo Palaeo Palaeo 156:123–138

    Google Scholar 

  • De Baar HJW, German CR, Elderfield H, Van Gaans P (1988) Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochim Cosmochim Acta 52:1203–1219

    Google Scholar 

  • Dickson JAD (1966) Carbonate identification and genesis as revealed by staining. J Sed Pet 36:491–505

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. AAPG Mem 1:108–121

    Google Scholar 

  • Dypvik H, Harris NB (2001) Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and Zr + Rb/Sr ratios. Chem Geol 18:131–146

    Google Scholar 

  • Eriksson KA, Truswell JF, Button A (1976) Paleoenvironmental and geochemical models from an Early Proterozoic carbonate succession in South Africa. In: Walter MR (ed) Stromatolites, pp 635–643

    Google Scholar 

  • Evamy BD (1963) The application of a chemical staining technique to a study of dedolomitization. Sedimentol 2:164–170

    Google Scholar 

  • Flugel E (1982) Microfacies analysis of limestones. Springer, Berlin, Heidelberg, p 633

    Google Scholar 

  • Folk RL (1959) Practical petrographical classification of limestones. AAPG Bull 43:1–38

    Google Scholar 

  • Franchi F, Turetta C, Cavalazzi B, Corami F, Barbieri R (2016) Trace elements and REE geochemistry of Middle Devonian carbonate mounds (Maider Basin, Eastern Anti-Atlas, Morocco): implications for early diagenetic processes. Sediment Geol 343:56–71

    Google Scholar 

  • Friedman GM (1997) Dissolution collapse breccias and paleokarst resulting from dissolution of evaporite rocks, especially sulfates. Carb Evap 12:53–63

    Google Scholar 

  • Frimmel HE (2009) Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem Geol 258:338–353

    Google Scholar 

  • German CR, Elderfield H (1989) Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochim Cosmochim Acta 53:2561–2571

    Google Scholar 

  • German CR, Elderfield H (1990) Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5:823–833

    Google Scholar 

  • Ghosh DB, Soni MK, Nair KKK, Munshi MM (1981) Stratigraphy and sedimentation of the Vindhyans in the lower Narmada valley. Misc Publ Geol Surv India 108:182–188

    Google Scholar 

  • Goldberg ED, Koide M, Schmitt RA (1963) Rare earth distributions in the marine environment. J Geophy Res 68:4209–4217

    Google Scholar 

  • Henderson P (1984) Rare earth element geochemistry. Elsevier, Amsterdam 510

    Google Scholar 

  • Hua G, Yuansheng D, Lian Z, Jianghai Y, Hu H (2013) Trace and rare earth elemental geochemistry of carbonate succession in the Middle Gaoyuzhuang Formation, Pingquan Section: Implications for Early Mesoproterozoic ocean redox conditions. J Palaeogeography 2:209–221

    Google Scholar 

  • Ireland HA (1971) Insoluble residues. In: Carver RA (ed) Procedures in sedimentary petrology, pp 479–498

    Google Scholar 

  • James NP (1980) Shallowing upward sequences in carbonates. In: Walker RG (ed) Facies models, Geosci Canada Reprint Ser 1:109–120

    Google Scholar 

  • James NP, Jones B (2016) Origin of carbonate sedimentary rocks. John Wiley, UK 466

    Google Scholar 

  • Jan MQ, Agheem MH, Laghari A, Anjum S (2017) Geology and petrography of the Nagar Parkar igneous complex, Southeastern Sind, Pakistan: the Kharsar body. J Geol Soc India 89:91–98

    Google Scholar 

  • Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111:111–129

    Google Scholar 

  • Joseph JK, Patel SJ, Bhatt NY (2016) Stratigraphy and depositional environment of sediments of the Goradongar Formation, Goradongar Range, Patcham Island, Kachchh. In: Thakkar MG (ed) Recent studies in the geology of Kachchh, Geol Soc India Spec Publ, vol 6, pp 32–45

    Google Scholar 

  • Kale VS, Patil Pillai S (2011) A reinterpretation of two Chert breccias from the Proterozoic Basins of India. J Geol Soc India 78:429–445

    Google Scholar 

  • Kamber BS, Webb GE (2001) The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim Cosmochim Acta 65:2509–2525

    Google Scholar 

  • Kamber BS, Webb GE, Gallagher M (2014) The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity. J Geol Soc 171:745–763

    Google Scholar 

  • Kcosis L, Gheerbrant E, Mouflih M, Cappetta H, Ulianov A, Chiaradia M, Bradep N (2015) Gradual changes in upwelled sea water conditions (redox, pH) from the late Cretaceous through early Paleogene at the NW coast of Africa: -ve Ce anomaly trend recorded in fossil bioapatite. Chem Geol 421:44–54

    Google Scholar 

  • Keith ML, Weber YN (1964) Carbon and oxygen isotopic composition of selected limestone and fossils. Geochim Cosmochim Acta 8:1787–1816

    Google Scholar 

  • Khelen AC, Manikyamba C, Ganguly S, Singh TD, Subramanyam KSV, Ahmad SM, Reddy MR (2017) Geochemical and stable isotope signatures of Proterozoic stromatolitic carbonates from the Vempalle and Tadpatri formations, Cuddapah Supergroup, India: implications on paleoenvironment and depositional conditions. Precam Res 298:365–384

    Google Scholar 

  • Kilibarada Z, Doffin J (2007) Mudcracks, bird’s-eye, and anhydrite in intertidal/ supratidal late Silurian Kokomo limestone, Indiana. Proc Indiana Acad Sci 116:1–10

    Google Scholar 

  • Kinsman DJ (1969) Modes of formation sedimentary associations and diagnostic features of shallow water and supratidal evaporites. AAPG Bull 53:830–840

    Google Scholar 

  • Komatsu T, Naruse H, Shigeta Y, Takashima R, Maekawa T, Dang HT, Dinh TC, Nguyen PD, Nguyen HH, Tanaka G, Sone M (2014) Lower Triassic mixed carbonate and siliciclastic setting with Smithian–Spathian anoxic to dysoxic facies, an Chau Basin, northeastern Vietnam. Sediment Geol 300:28–48

    Google Scholar 

  • Lasemi Y, Jahani D, Amin-Rasouli H, Lasemi Z (2012) Ancient carbonate tidalites. In: Davis RA, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, Heidelberg, Germany, pp 567–607

    Google Scholar 

  • Li P, Zhang C, Guo Z, Deng C, Ji X, Jablonski NG, Wu H, Zhu R (2019) Clay mineral assemblages in the Zhaotong Basin of southwestern China: implications for the late Miocene and Pliocene evolution of the South Asian monsoon. Palaeo Palaeo Palaeo 516:90–100

    Google Scholar 

  • Ling HF, Chen X, Li D, Wang D, Shields-Zhou GA, Zhu MY (2013) Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow sea-water. Precam Res 225:110–127

    Google Scholar 

  • Longman MW (1980) Carbonate diagenetic textures from near surface diagenetic environments. AAPG Bull 64:461–487

    Google Scholar 

  • Madhavaraju J, Löser H, Scott RW, Sandeep S, Sial AN, Ramasamy S (2017) Petrography, geochemistry and stable isotopes of carbonate rocks, Lower Cretaceous Alisitos Formation, Los Torotes section, Baja California. Mexico Revis Mex de Cien Geológ 34:63–77

    Google Scholar 

  • Mahboubi A, Moussavi-Harami R, Carpenter S, Aghaei A, Collins LB (2010) Petrographical and geochemical evidences for paragenetic sequence interpretation of diagenesis in mixed siliciclastic-carbonate sediments: Mozduran Formation (Upper Jurassic), south of Agh-Darband, NE Iran. Carb Evap 25:231–246

    Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral Geochem 21:169–200

    Google Scholar 

  • McManus J, Berelson WM, Severmann S, Poulson RL, Hammond DE, Klinkhammer GP, Holm C (2006) Molybdenum and uranium geochemistry in continental margin sediments: paleoproxy potential. Geochim Cosmochim Acta 70:4643–4662

    Google Scholar 

  • Meunier A, Velde B (2004) The geology of illite. In: Meunier A, Velde B (eds) illite. Springer, Berlin, Helidelberg, pp 63–143

    Google Scholar 

  • Mikhalfi-Al AS (2008) Rare earth elements in modern coral sands: an environmental proxy. Environ Geol 54:1145–1153

    Google Scholar 

  • Nagarajan R, Madhavraju J, Armstrong-Altrin JS, Nagendra R (2011) Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India. Geosci J 15:9–25

    Google Scholar 

  • Nagendra R, Nagarajan R, Bakkiaraj D, Armstrong-Altrin JS (2011) Depositional and post-depositional setting of Maastrichtian limestone, Ariyalur Group, Cauvery Basin, South India: a geochemical appraisal. Carb Evap 26:127–147

    Google Scholar 

  • Nothdurft LD, Webb GE, Kamber BS (2004) Rare earth element geochemistry of Late Devonian reefal carbonates, canning basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochim Cosmochim Acta 68:263–283

    Google Scholar 

  • Oppel A (1856) Dei Juraformation Englands Frankreichs und Südwestlichen Deutschlands. Abdruck des Würternbergen naturwissen-schaflichen Jahreshefte 12–14:1–857

    Google Scholar 

  • Özyurt M, Kırmacı MZ, Al-Aasm I, Hollis C, Taslı K, Kandemir R (2020) REE characteristics of Lower Cretaceous Limestone Succession in Gümüşhane, NE Turkey: implications for Ocean Paleoredox conditions and diagenetic alteration. Minerals 10:1–25

    Google Scholar 

  • Pandey B, Pathak D, Krishna Jai (2013) Calliphylloceras Heterophylloides (Oppel, 1856) from the basal most Jurassic succession of Sadhara dome, Kachchh, India. J Palaeontol Soc India 58:61–65

    Google Scholar 

  • Patel SJ, Joseph JK, Bhatt NY (2013) Sequence stratigraphic analysis of the mixed siliciclastic-carbonate sediments (Middle Jurassic) of the Patcham island, Kutch, Western India: an ichinological approach. Geol Soc India Spec Publ 1:57–77

    Google Scholar 

  • Patel SJ, Joseph JK, Bhatt NY (2014) Ichnology of Goradongar Formation, Goradongar Hill Range, Patcham Island, Kachachh, Western India. J Geol Soc India 84:129–154

    Google Scholar 

  • Piper DZ, Bau M (2013) Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions. Am J Analytic Chem 4:69–83

    Google Scholar 

  • Piper DZ, Perkins RB, Rowe HD (2007) Rare-earth elements in the Permian Phosphoria formation: paleo proxies of ocean geochemistry. Deep-Sea Res II 54:1396–1413

    Google Scholar 

  • Pomoni FA, Karakitsios V (2016) Sedimentary facies analysis of a high-frequency, small-scale, peritidal carbonate sequence in the Lower Jurassic of the Tripolis carbonate unit (central western Crete, Greece): long-lasting emergence and fossil laminar dolocretes horizons. J Palaeogeography 5:241–257

    Google Scholar 

  • Qui Z, Wang QC, Yan DT (2013) Geochemistry of the Middle to Late Permian limestones from the marginal zone of an isolated platform (Laibin, South China). Sci China Earth Sci 56:1688–1700

    Google Scholar 

  • Rajendran K, Rajendran CP, Thakkar M, Tuttle MP (2001) The 2001 Kachchh (Bhuj) earthquake: coseismic surface features and their significance. Curr Sci 80:1397–1405

    Google Scholar 

  • Rameil N (2008) Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: a case study from the Jura Mountains (NW Switzerland, E France). Sediment Geol 2:70–85

    Google Scholar 

  • Rodríguez-Pascua MA, Calvo JP, De Vicente G, Gómez-Gras D (2000) Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sediment Geol 135:117–135

    Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Pearson Education Ltd, Essex, London 352

    Google Scholar 

  • Roy A, Chakrabarti G, Shome D (2018) Geochemistry of the Neoproterozoic Narji limestone, Cuddapah Basin, Andhra Pradesh, India: implication on palaeoenvironment. Arab J Geosci 784:1–13

    Google Scholar 

  • Scholle PA, Arthur MA (1980) Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bull 64:67–87

    Google Scholar 

  • Sen S, Mishra M (2015) Geochemistry of Rohtas limestone from Vindhyan Supergroup, Central India: evidences of detrital input from felsic source. Geochem Int 53:1107–1122

    Google Scholar 

  • Shabafrooz R, Mahboubi A, Moussavi-Harami R, Amiri-Bakhtiar H (2013) Facies analysis and sequence stratigraphy of the evaporite bearing Sachun Formation at the type locality, South East Zagros Basin. Iran. Carb Evap 28:457–474

    Google Scholar 

  • Shankar R (2001) Seismotectonics of Kachchh rift Basin and its bearing on the Himalayan Seismicity. ISET J Earthquake Tech 38:59–65

    Google Scholar 

  • Singh AK, Tewari VC, Sial AN, Khanna PP, Singh NI (2016) Rare earth elements and stable isotope geochemistry of carbonates from the melange zone of Manipur ophiolitic Complex, Indo-Myanmar Orogenic Belt, Northeast India. Carb Evap 31:139–151

    Google Scholar 

  • Soman GR, Kale MG (1990) Sedimentological studies of Penganga limestones from Wani area, District Yeotmal, Maharashtra. Geol Surv India Spec Publ 28:369–383

    Google Scholar 

  • Srivastava VK, Singh BP (2019) Depositional environments and sources for the middle Eocene Fulra Limestone Formation, Kachchh Basin, western India: evidences from facies analysis, mineralogy, and geochemistry. Geol J 54:62–82

    Google Scholar 

  • Tanaka K, Akagawa F, Yamamoto K, Tani Y, Kawabe T, Kawai T (2007) Rare earth element geochemistry of Lake Baikal sediment: its implication for geochemical response to climate change during the last glacial/interglacial transition. Quat Sci Rev 26:1362–1368

    Google Scholar 

  • Tang HS, Chen YJ, Santosh M, Zhong H, Yang T (2013) REE geochemistry of carbonates from the Guanmenshan Formation, Liaohe Group, NE Sino-Korean Craton: implications for seawater compositional change during the Great Oxidation Event. Precam Res 227:316–336

    Google Scholar 

  • Tlig S, M’Rabet A (1985) A comparative study of the Rare Earth element (REE) distributions within the lower Cretaceous dolomites and limestones of Central Tunisia. Sedimentol 32:897–907

    Google Scholar 

  • Tobia FH (2018) Stable isotope and rare earth element geochemistry of the Baluti carbonates (Upper Triassic), Northern Iraq. Geosci J 22:975–987

    Google Scholar 

  • Tostevin R, Shields GA, Tarbuck GM, He T, Clarkson MO, Wood RA (2016) Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem Geol 438:146–162

    Google Scholar 

  • Torsvik TH, Van der Voo R, Preeden U, Mac Niocaill C, Stenberger B, Doubrovine PV, van Hinsbergen DJ, Domeir M, Gaina C, Tohver E, Meerut JG (2012) Phanerozoic polar wander, paleogeography and dynamics. Earth Sci Rev 114:325–368

    Google Scholar 

  • Tucker ME (1985) Shallow marine carbonate facies and models. Geol Soc London Spec Publ 18:147–169

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publications, Oxford, London, Edinburgh, Melbourne 482

    Google Scholar 

  • van Hinsbergen DJ, de Groot LV, van Schaik SJ, Spakman W, Bijl PK, Sluijs A, Langereis, CG, Brinkhuis H (2015) A paleolatitude calculator for paleoclimate studies. PloS One 10. https://doi.org/10.1371/journal.pone.0126946

  • Veizer J, Hoefs J (1976) The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387–1395

    Google Scholar 

  • Vincent B, Rambeau C, Emmanuel L, Loreau JP (2006) Sedimentology and trace element geochemistry of shallow-marine carbonates: an approach to paleoenvironmental analysis along the Pagny-sur-Meuse Section (Upper Jurassic, France). Facies 52:69–84

    Google Scholar 

  • Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64:1557–1565

    Google Scholar 

  • Woo KS (1999) Cyclic tidal successions of the middle Ordovician Maggol Formation in the Taebaeg area, Kangwondo, Korea. Geosci J 3:123–140

    Google Scholar 

  • Wright J, Seymour RS, Shaw HF (1984) REE and neodymium isotopes in conodont apatite. Variation with geological age and depositional environment. GSA Spec Pap 196:325–340

    Google Scholar 

  • Zhang J, Nozaki Y (1998) Behavior of rare earth elements in seawater at the ocean margin: A study along the slopes of the Sagami and Nankai troughs near Japan. Geochim Cosmochim Acta 62:1307–1317

    Google Scholar 

  • Zhao YY, Zheng YF, Chen F (2009) Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chem Geol 265:345–362

    Google Scholar 

  • Zhao MY, Zheng YF (2014) Marine carbonate records of terrigenous input into Paleotethyan seawater: geochemical constraints from Carboniferous limestones. Geochim Cosmochim Acta 141:508–531

    Google Scholar 

Download references

Acknowledgements

Field observations recorded by us in this paper, were made during the M.Sc. study tour to Kachchh in 2006–2007. We thank Drs. Abhay Mudholkar, J. N. Pattan, G. Parthiban, from NIO, Goa; for providing major oxide and trace, REE data respectively. Dr. D. J. Patil, NGRI, Hyderabad, is thanked for providing C and O stable isotope data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makarand G. Kale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kale, M.G., Pundalik, A.S., Karmalkar, N.R., Duraiswami, R.A. (2021). Oxic-dysoxic Tidal Flat Carbonates from Sadara, Pachham Island, Kachchh. In: Banerjee, S., Sarkar, S. (eds) Mesozoic Stratigraphy of India. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-030-71370-6_8

Download citation

Publish with us

Policies and ethics