Skip to main content

The I-Walk Assistive Robot

A Multimodal Intelligent Robotic Rollator Providing Cognitive and Mobility Assistance to the Elderly and Motor-Impaired

  • Conference paper
  • First Online:
Human-Friendly Robotics 2020 (HFR 2020)

Abstract

Robotic rollators can play a significant role as assistive devices for people with impaired movement and mild cognitive deficit. This paper presents an overview of the i-Walk concept; an intelligent robotic rollator offering cognitive and ambulatory assistance to people with light to moderate movement impairment, such as the elderly. We discuss the two robotic prototypes being developed, their various novel functionalities, system architecture, modules and function scope, and present preliminary experimental results with actual users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andriluka, M., et al.: 2D human pose estimation: new benchmark and state of the art analysis. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3686–3693 (2014)

    Google Scholar 

  2. Barrué, C., et al.: The i-Walker: an Intelligent pedestrian mobility aid. In: Bichindaritz, I., et al. (eds) Computational Intelligence in Healthcare 4: Advanced Methodologies, pp. 103–123. Springer (2010)

    Google Scholar 

  3. Bateni, H., Maki, B.E.: Assistive devices for balance and mobility: benefits, demands, and adverse consequences. Arch. Phys. Med. Rehabil. 86(1), 134–145 (2005)

    Google Scholar 

  4. beactive + e. https://www.my-beactive.de/. Accessed 20 Jan 2020

  5. Bennell, K., et al.: Measures of physical performance assessments: Self-Paced Walk Test (SPWT), Stair Climb Test (SCT), Six-Minute Walk Test (6MWT), Chair Stand Test (CST), Timed Up & Go (TUG), Sock Test, Lift and Carry Test (LCT), and Car Task. Arthritis Care Res. 63(Suppl 11), S350–370 (2011)

    Google Scholar 

  6. Berg, K., et al.: The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand. J. Rehabil. Med. 27(1), 27–36 (1995)

    Google Scholar 

  7. Bieber, G., et al.: RoRo: a new robotic rollator concept to assist the elderly and caregivers. In: Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments, pp. 430–434. Rhodes, Greece (2019)

    Google Scholar 

  8. Bocklisch, T., et al.: Rasa: Open Source Language Understanding and Dialogue Management. arXiv:1712.05181 [cs] (2017)

  9. Bošnak, M., Škrjanc, I.: Embedded control system for smart walking assistance device. IEEE Trans. Neural Syst. Rehabil. Eng. 25(3), 205–214 (2017)

    Google Scholar 

  10. Cao, Z., et al.: Realtime multi-person 2D pose estimation using part affinity fields. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1302–1310 (2017)

    Google Scholar 

  11. Chalvatzaki, G., et al.: Augmented human state estimation using interacting multiple model particle filters with probabilistic data association. IEEE Robot. Autom. Lett. 3(3), 1872–1879 (2018)

    Google Scholar 

  12. Chalvatzaki, G., et al.: LSTM-based network for human gait stability prediction in an intelligent robotic rollator. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4225–4232 (2019)

    Google Scholar 

  13. Chalvatzaki, G., et al.: User-adaptive human-robot formation control for an intelligent robotic walker using augmented human state estimation and pathological gait characterization. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6016–6022 (2018)

    Google Scholar 

  14. Donoghue, O.A., et al.: Using timed up and go and usual gait speed to predict incident disability in daily activities among community-dwelling adults aged 65 and older. Arch. Phys. Med. Rehabil. 95(10), 1954–1961 (2014)

    Google Scholar 

  15. Efthimiou, E., et al.: User centered design in practice: adapting HRI to real user needs. In: Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments, pp. 425–429. Rhodes, Greece (2019)

    Google Scholar 

  16. ello. Der elektrische Rollator. https://ello.wmt.team/. Accessed 20 Jan 2020

  17. Fountoulakis, K.N., et al.: Mini mental state examination (MMSE): a validation study in Greece. Am. J. Alzheimer’s Dis. 15(6), 342–345 (2000)

    Google Scholar 

  18. Fox, D., et al.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

    Google Scholar 

  19. Frizera-Neto, A., et al.: Empowering and assisting natural human mobility: the simbiosis walker. Int. J. Adv. Robot. Syst. 8(3), 29 (2011)

    Google Scholar 

  20. Google cloud speech-to-text. https://cloud.google.com/speech-to-text/. Accessed 20 Jan 2020

  21. Heikkinen, E., et al.: Disability in Old Age. The Finnish Centre for Interdisciplinary Gerontology University of Jyväskylä Finland (2004)

    Google Scholar 

  22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  23. IrisTK. Intelligent Real-Time Interactive Systems Toolkit. http://www.iristk.net/overview.html. Accessed 20 Jan 2020

  24. Konolige, K.: A gradient method for realtime robot control. In: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), vol. 1, pp. 639–646 (2000)

    Google Scholar 

  25. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Computer Vision – ECCV 2014 (Cham, 2014), pp. 740–755 (2014)

    Google Scholar 

  26. Martins, M., et al.: A new integrated device to read user intentions when walking with a Smart Walker. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN), pp. 299–304 (2013)

    Google Scholar 

  27. Moustris, G.P., et al.: User front-following behaviour for a mobility assistance robot: a kinematic control approach, pp. 142–149 (2015)

    Google Scholar 

  28. Moustris, G.P., Tzafestas, C.S.: Assistive front-following control of an intelligent robotic rollator based on a modified dynamic window planner. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 588–593 (2016)

    Google Scholar 

  29. Moustris, G.P., Tzafestas, C.S.: Intention-based front-following control for an intelligent robotic rollator in indoor environments. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7 (2016)

    Google Scholar 

  30. Muro-de-la-Herran, A., et al.: Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 14(2), 3362–3394 (2014)

    Google Scholar 

  31. Olenšek, A., et al.: Adaptive dynamic balance training during overground walking with assistive device. In: 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1066–1070 (2012)

    Google Scholar 

  32. Palopoli, L., et al.: Navigation assistance and guidance of older adults across complex public spaces: the DALi approach. Intell. Serv. Robot. 8(2), 77–92 (2015)

    Google Scholar 

  33. Paulo, J., et al.: ISR-AIWALKER: robotic walker for intuitive and safe mobility assistance and gait analysis. IEEE Trans. Hum.-Mach. Syst. 47(6), 1110–1122 (2017). https://doi.org/10.1109/THMS.2017.2759807

  34. RASA. http://rasa.com. Accessed 20 Jan 2020

  35. RASA: Open source machine learning tools for developers to build, improve, and deploy text-and voice-based chatbots and assistants. https://github.com/RasaHQ. Accessed 20 Jan 2020

  36. Robot Assist Walker RT.2. https://www.rtworks.co.jp/eng/product/rt2.html. Accessed 20 Jan 2020

  37. Robot Care Systems – LEA. https://www.robotcaresystems.com/. Accessed 20 Jan 2020

  38. Shin, J., et al.: SmartWalker: an intelligent robotic walker. J. Am. Intell. Smart Environ. 8(4), 383–398 (2016)

    Google Scholar 

  39. Sierra, M.S.D., et al.: Human-robot-environment interaction interface for smart walker assisted gait: AGoRA walker. Sensors 19(13), 2897 (2019)

    Google Scholar 

  40. THERA-Trainer e-go. https://www.thera-trainer.de/en/thera-trainer-products/gait/thera-trainer-e-go/. Accessed 20 Jan 2020

  41. Tinetti, M.E., et al.: Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 80(3), 429–434 (1986)

    Google Scholar 

  42. User-Centered Design: An Introduction. https://usabilitygeek.com/user-centered-design-introduction/. Accessed 20 Jan 2020

  43. Wachaja, A., et al.: Navigating blind people with walking impairments using a smart walker. Auton. Robot. 41(3), 555–573 (2017)

    Google Scholar 

  44. Werner, C., et al.: User-oriented evaluation of a robotic rollator that provides navigation assistance in frail older adults with and without cognitive impairment. Gerontology 64(3), 278–290 (2018)

    Google Scholar 

  45. Burnfield, M.: Gait analysis: normal and pathological function. J. Sports Sci. Med. 9(2), 353 2010

    Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code:T1EDK- 01248/MIS: 5030856)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Moustris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moustris, G. et al. (2021). The I-Walk Assistive Robot. In: Saveriano, M., Renaudo, E., Rodríguez-Sánchez, A., Piater, J. (eds) Human-Friendly Robotics 2020. HFR 2020. Springer Proceedings in Advanced Robotics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-71356-0_3

Download citation

Publish with us

Policies and ethics