Skip to main content

Climate-Induced Global Forest Shifts due to Heatwave-Drought

  • Chapter
  • First Online:
Ecosystem Collapse and Climate Change

Part of the book series: Ecological Studies ((ECOLSTUD,volume 241))

Abstract

Episodes of forest mortality attributed to extreme climate variability (e.g. droughts, heatwaves) associated with climate change are increasingly reported in most biomes. The severity and extent of the mortality are also modulated by soils and topography characteristics and the presence of other disturbances such as pests, pathogens, wildfires, windthrow, and past management. Palaeoecological and historical information show that drought-induced forests shifts have occurred in the past in many regions. However, anthropogenic causes are key determinants in current drought-induced transformations of forests to non-forested ecosystems.

The role of forest mortality leading to forest collapse is poorly understood, especially given the lack of long-term ecological surveys. In the short term, we find that an alternate set of species usually takes over the previously dominant tree species in temperate and boreal forests, through gap dynamics.

In our global review, trees are replaced by shrubs in 34% of the cases studied and by grasses in 10% of the cases, pointing to characteristics of forest collapse in the latter more extreme case. Overall these episodes promote a wide array of changes framed in a successional context, usually towards more xeric and herbaceous vegetation. The eventual forest dynamics are largely defined by the historical context and particularly by human management, in which to a large extent determines the species pool, forest structure, and regeneration patterns.

Early warning signals of ecosystem shifts based on long-term monitoring and statistics appear essential to anticipate forest collapse. Remote sensing tools constitute a powerful tool for the assessment of changes in forest functional properties. However, when analysing forest dynamics and processes based on biodiversity, the information provided by remote sensing merits further research. We find limited evidence of widespread forest collapse at the global scale, but ongoing mortality events represent a “window to the future” to understand forest resilience in light of increased frequency of climatic extremes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatzoglou JT, Williams AP (2016) Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci 113:11770–11775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adams HD, Luce CH, Breshears DD, Allen CD, Weiler M, Cody HV, Smith AMS, Huxman TE (2012) Transformative ecosystem change and ecohydrology: Ushering in a new era for watershed management. Ecohydrology 130:126–130

    Google Scholar 

  • Albertson FW, Weaver JE (1945) Injury and Death or Recovery of Trees in Prairie Climate. Ecol Monogr 15:395–433

    Google Scholar 

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proc Natl Acad Sci 95:14839–14842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen CD, Savage M, Falk DA, Suckling KF, Swetnam TW, Schulke T, Stacey PB, Morgan P, Hoffman M, Klingel J (2002) Ecological restoration of Southwestern ponderosa pine ecosystems: A broad perspective. Ecol Appl 12:1418–1433

    Google Scholar 

  • Allen CD et al (2010) A global overview of drought and heat induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Google Scholar 

  • Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:1–55

    Google Scholar 

  • Anderegg WRJ, Kane JM, Anderegg LDL (2013a) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Chan 3:30–36

    Google Scholar 

  • Anderegg LDL, Anderegg WRL, Abatzoglou J, Hausladen AM, Berry JA (2013b) Drought characteristics’ role in widespread aspen forest mortality across Colorado, USA. Glob Chang Biol 19:1526–1537

    PubMed  Google Scholar 

  • Anderegg WRL, Plavcova L, Anderegg LDL, Hacke UG, Berry JA, Field CB (2013c) Drought’s legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Chang Biol 19:1188–1196

    PubMed  Google Scholar 

  • Anderegg WRL et al (2015) Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol 208:674–683

    PubMed  Google Scholar 

  • Assal TJ, Anderson PJ, Sibold J (2016) Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem. For Ecol Manag 365:137–151

    Google Scholar 

  • Aynekulu E et al (2011) Dieback affects forest structure in a dry Afromontane forest in northern Ethiopia. J Arid Environ 75:499–503

    Google Scholar 

  • Bart RB, Tague CL, Moritz MA (2016) Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow. PLoS One. https://doi.org/10.1371/journal.pone.0161805

  • Barton AM, Poulos HM (2018) Pine vs. oaks revisited: conversion of Madrean pine-oak forest to oak shrubland after high-severity wildfire in the Sky Islands of Arizona. For Ecol Manag 414:28–40

    Google Scholar 

  • Batllori E, De Cáceres M, Brotons L, Ackerly DD, Moritz MA, Lloret F (2017) Cumulative effects of fire and drought in Mediterranean ecosystems. Ecosphere 8:e01906

    Google Scholar 

  • Batllori E, De Cáceres M, Brotons L, Ackerly DD, Moritz MA, Lloret F (2019) Compound fire-drought regimes promote ecosystem transitions in Mediterranean ecosystems. J Ecol 107:1187–1192

    Google Scholar 

  • Batllori E et al (2020) Forest and woodland replacement patterns following drought-related mortality. PNAS 117:29720–29729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becek K, Horwarth AB (2017) Is vegetation collapse on Borneo already in progress? Nat Hazards 85:1279–1290

    Google Scholar 

  • Bell DM, Bradford JB, Lauenroth WK (2014) Forest stand structure, productivity, and age mediate climatic effects on aspen decline. Ecology 95:2040–2046

    PubMed  Google Scholar 

  • Bentouati A (2008) La situation du cèdre de l’Atlas dans les Aurès (Algérie). Forêt Méditerranéenne 29:203–208

    Google Scholar 

  • Berner LT, Law BE, Meddens AJH, Hicke JA (2017) Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States. Environ Research Lett 12:065005

    Google Scholar 

  • Bhiry N, Filion L (1996) Mid-Holocene hemlock decline in eastern North America linked with phytophagous insect activity. Quat Res 45:312–320

    Google Scholar 

  • der Bolt B et al (2018) Climate reddening increases the chance of critical transitions. Nat Clim Chan 8:478–484

    Google Scholar 

  • Bonal D, Burban B, Stahl C, Wagner F, Hérault B (2016) The response of tropical rainforests to drought-lessons from recent research and future prospects. Ann For Sci 73:27–44

    PubMed  Google Scholar 

  • Bosela M, Kulla L, Roessiger J, Seben V, Dobor L, Buntgen U, Lukac M (2019) Long-term effects of environmental change and species diversity on tree radial growth in a mixed European forest. For Ecol Manag 446:293–303

    Google Scholar 

  • Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Siléiro D, Macedo MN, Davidson EA, Nóbrega CC, Alencar A, Soares-Filho BS (2014) Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc Natl Acad Sci 111:6347–6352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breshears DD et al (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci 102:15144–15148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Browers NC, van Dongen R, Matusick G, Coops NC, Strelein G, Hardy G (2015) Inferring drought and heat sensitivity across a Mediterranean forest region in southwest Western Australia: a comparison of approaches. Forestry 88:454–464

    Google Scholar 

  • Buma B (2015) Disturbance interactions: Characterization, prediction, and the potential for cascading effects. Ecosphere 6:1–15

    Google Scholar 

  • Byer S, Jin Y (2017) Detecting drought-induced Tree Mortality in Sierra Nevada Forests with time series of satellite data. Remote Sens 9:929

    Google Scholar 

  • Cailleret M, Nourtier M, Amm A, Durand-Gillmann M, Davi H (2014) Drought-induced decline and mortality of silver fir differ among three sites in Southern France. Ann For Sci 71:643–657

    Google Scholar 

  • Cailleret M et al (2016) A synthesis of radial growth patterns preceding tree mortality. Glob Chang Biol 23:1675–1690

    PubMed  Google Scholar 

  • Camarero JJ, Bigler C, Linares JC, Gil-Pelegrín E (2011) Synergistic effects of past historical logging and drought on the decline of Pyrenean silver fir forests. For Ecol Manag 262:759–769

    Google Scholar 

  • Canham CD, Murphy L (2017) The demography of tree species response to climate: Sapling and canopy tree survival. Ecosphere 8:e01701

    Google Scholar 

  • Carpenter SR, Cole JJ, Pace ML, Batt R, Brock WA, Cline T, Coloso J, Hodgson JR, Kitchell JF, Seekell DA, Smith L, Weidel B (2011) Early warnings of regime shifts: a whole-ecosystem experiment. Science 332:1079–1082

    CAS  Google Scholar 

  • Ciais P et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    CAS  Google Scholar 

  • Clark DB, Soto Castro C, Alfaro Alvarado LD, Read JM (2004) Quantifying mortality of tropical rain forest trees using high-spatial-resolution satellite data. Ecol Lett 7:52–59

    Google Scholar 

  • Coates AR, Dennison PD, Roberts DA, Roth KL (2015) Monitoring the impacts of severe drought on Southern California Chaparral Species using Hyperspectral and Thermal Infrared Imagery. Remote Sens 7:14276–14291

    Google Scholar 

  • Cobb RC et al (2017) Ecosystem dynamics and management after forest die-off: a global synthesis with conceptual state-and-transition models. Ecosphere 8:e02034

    Google Scholar 

  • Condit R (1998) Ecological implications of changes in drought patterns: shifts in forest composition in Panama. Clim Chang 39:413–427

    Google Scholar 

  • Connell SD, Ghedini G (2015) Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol Evol 30:513–515

    PubMed  Google Scholar 

  • Coop JD, De Lory TJ, Downing WM, Haire SL, Krawchuk MA, Miller C, Parisien MA, Walker RB (2019) Contributions of fire refugia to resilient ponderosa pine and dry mixed-conifer forest landscapes. Ecosphere 10:e02809

    Google Scholar 

  • Dakos V, Carpenter SR, van Nes EH, Scheffer M (2014) Resilience indicators: prospects and limitations for early warnings of regime shifts. Phil Trans R Soc Lond B 370:20130263

    Google Scholar 

  • De Grandpré L, Kneeshaw DD, Perigon S, Boucher D, Marchand M, Pureswaran D, Girardin MP (2018) Adverse climatic periods precede and amplify defoliator-induced tree mortality in eastern boreal North America. J Ecol 107:452–467

    Google Scholar 

  • Delatour C (1983) Le dépérissements de chênes en Europe. Révue Forestale Française 35:265–282

    Google Scholar 

  • Dobbertin M, Wermelinger B, Bigler C, Bürgi M, Carron M, Forster B, Gimmi U, Rigling A (2007) Linking Increasing Drought Stress to Scots Pine Mortality and Bark Beetle Infestations. The Scie World J 7(S1):231–239

    Google Scholar 

  • Doughty CE et al (2015) Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519:78–84

    CAS  PubMed  Google Scholar 

  • Easterling DR et al (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    CAS  PubMed  Google Scholar 

  • Eby S, Agrawal A, Majumder S, Dobson AP, Guttal V (2017) Alternative stable states and spatial indicators of critical slowing down along a spatial gradient in a savanna ecosystem. Glob Ecol Biogeogr 26:638–649

    Google Scholar 

  • Ennos R, Cottrell J, Hall J, O’Brien D (2019) Is the introduction of novel exotic forest tree species a rational response to rapid environmental change?—A British perspective. For Ecol Manag 32:718–728

    Google Scholar 

  • Enquist BJ, Enquist CAF (2010) Long-term change within a Neotropical forest: assessing differential functional and floristic responses to disturbance and drought. Glob Change Biol 17:1408–1424

    Google Scholar 

  • Enright NJ, Fontaine JB, Bowman DMJS, Bradstock RA, Williams RJ (2015) Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front Ecol Environ 13:265–272

    Google Scholar 

  • Esteve Selma MA, Carreño Fructuoso MF, Moya Perez JM, Montoya P, Fernandez-Martinez J, Perez-Navarro MA, Lloret F (2017) La respuesta de los bosques de Pinus halepensis al cambio climático y los eventos de sequía extrema. Modelos preliminares. In: Conesa García C, Perez Cutillas P (eds) Los riesgos ambientales en la Región de Murcia. Ediciones Universidad de Murcia, pp 163–185

    Google Scholar 

  • Feldpausch TR et al (2016) Amazon forest response to repeated droughts. Glob Biogeochem Cycles 30:964–982

    CAS  Google Scholar 

  • Fensham RJ, Holman JE (1999) Temporal and spatial patterns in drought-related tree dieback in Australian savanna. J Appl Ecol 36:1035–1050

    Google Scholar 

  • Fensham R, Laffineur RJ, Allen CA (2019) To what extent is drought-induced tree mortality a natural phenomenon? Glob Ecol Biogeogr 28:365–373

    Google Scholar 

  • Fetting CJ, Mortenson LA, Bulaon BM, Foulk PB (2019) Tree mortality following drought in the central and southern Sierra Nevada, California, U.S. For Ecol Manage 432:164–178

    Google Scholar 

  • Fischer J, Lindenmayer DB, Manning AD (2006) Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Front Ecol Environ 4:80–86

    Google Scholar 

  • Foster DR, Oswald WW, Faison EK, Doughty E, Hansen BCS (2006) A climatic driver for abrupt mid-holocene vegetation dynamics and the hemlock decline in New England. Ecology 87:2959–2966

    PubMed  Google Scholar 

  • Galeano A, Urrego LE, Botero V, Bernal G (2017) Mangrove resilience to climate extreme events in a Colombian Caribbean Island. Wetl Ecol Manag 25:743–760

    Google Scholar 

  • Galiano L, Martínez-Vilalta J, Lloret F (2010) Drought-induced multifactor decline of Scots Pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 13:978–991

    CAS  Google Scholar 

  • Garrity SR, Allen CD, Brumby SP, Gangodagamage C, McDowell NG, Cai DM (2013) Quantifying tree mortality in a mixed species woodland using multitemporal high spatial resolution satellite imagery. Remote Sens Environ 129:54–65

    Google Scholar 

  • Gaylord ML et al (2013) Drought predisposes pinyon-juniper woodlands to insect attacks and mortality. New Phytol 198:567–578

    CAS  PubMed  Google Scholar 

  • Gonzalez P (2001) Desertification and a shift of forest species in the West African Sahel. Clim Res 17:217–228

    CAS  Google Scholar 

  • Grant PJ (1984) Drought effect on high-altitude forests, Ruahine Range, North Island, New Zealand. J Bot 22:15–27

    Google Scholar 

  • Grant GE, Tague CL, Allen CD (2013) Watering the forest for the trees: an emerging priority for managing water in forest landscapes. Front Ecol Environ 11:314–321

    Google Scholar 

  • Greenwood S et al (2017) Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol Lett 20:539–553

    PubMed  Google Scholar 

  • Grootes PM, Stuiver M (1997) Oxygen 18 / 16 variability in Greenland snow and ice with 103 to 105-year time resolution. J Geophysical Res 102:26455–26470

    CAS  Google Scholar 

  • Grossiord C et al (2014) Tree diversity does not always improve resistance of forest ecosystems to drought. Proc Natl Acad Sci 111:14812–14815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann H et al (2018) Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol 218:15–28

    PubMed  Google Scholar 

  • Harvey BJ, Donato DC, Turner MG (2016) High and dry: post-fire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches. Glob Ecol Biogeogr 25:655–669

    Google Scholar 

  • Heckmann M, Muiruri M, Boom A, Marchant R (2014) Human–environment interactions in an agricultural landscape: a 1400-yr sediment and pollen record from North Pare, NE Tanzania. Palaeog Palaeoclim Palaeoecol 406:49–61

    Google Scholar 

  • Henzler J, Weise H, Enright NJ, Zander S, Tietjen B (2018) A squeeze in the suitable fire interval: simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions. Ecol Model 389:41–49

    Google Scholar 

  • Hiernaux P, Diarra L, Trichon V, Mougin E, Soumaguel N, Baup F (2009) Woody plant population dynamics in response to climate changes from 1984 to 2006 in Sahel (Gourma, Mali). J Hydrol 375:103–113

    Google Scholar 

  • Hogg EH, Brandt JP, Michaellian M (2008) Impacts of a regional drought on the productivity, dieback, and biomass of western Canadian aspen forests. Can J For Res 38:1373–1384

    Google Scholar 

  • Huang CY, Anderegg WRL (2012) Large drought-induced aboveground live biomass losses in southern Rocky Mountain aspen forests. Glob Change Biol 18:1016–1027

    Google Scholar 

  • Huang CY, Anderegg WRL (2014) Vegetation, land surface brightness, and temperature dynamics after aspen forest die-off. J Geophys Res Biogeosciences 119:1297–1308

    Google Scholar 

  • Huang CY, Asner GP, Barger NN, Neff JC, Floyd ML (2010) Regional aboveground live carbon losses due to drought-induced tree dieback in piñon–juniper ecosystems. Remote Sens Environ 114:1471–1479

    Google Scholar 

  • Huang K, Yi C, Wu D, Zhou T, Zhao X, Bjanford WJ, Wei S, Wu H, Ling D, Li Z (2015) Tipping point of a conifer forest ecosystem under severe drought. Environ Res Lett 10:024011

    Google Scholar 

  • Hutchinson C, Gravel D, Guichard F, Potvin C (2018) Effect of diversity on growth, mortality, and loss of resilience to extreme climate events in a tropical planted forest experiment. Sci Rep 8:15443

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

    Google Scholar 

  • Ivory SJ, Russell J (2016) Climate, herbivory, and fire controls on tropical African forest for the last 60 ka. Quat Sci Rev 148:101–114

    Google Scholar 

  • Jacobsen AL, Pratt RB (2018) Extensive drought-associated plant mortality as an agent of type-conversion in chaparral shrublands. New Phytol 219:498–504

    PubMed  Google Scholar 

  • Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, Meentemeyer RK, Metz MR, Perry GLW, Schoennagel T, Turner MG (2016) Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ 14:369–378

    Google Scholar 

  • Jump AS, Ruiz-Benito P, Greenwood S, Allen CD, Kitzberger T, Fensham R, Martínez-Vilalta J, Lloret F (2017) Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob Chang Biol 23:3742–3757

    PubMed  Google Scholar 

  • Karavani A, Boer MM, Baudena M, Colinas C, Díaz-Sierra R, Pemán J, de Luis M, Enríquez-de-Salamanca A, Resco de Dios V (2018) Fire-induced deforestation in drought-prone Mediterranean forests: drivers and unknowns from leaves to communities. Ecol Monogr 88:141–169

    Google Scholar 

  • Kharuk VI, Im ST, Oskorbin PA, Petrov IA, Ranson KJ (2013) Siberian pine decline and mortality in southern siberian mountains. For Ecol Manag 310:312–320

    Google Scholar 

  • Kharuk VI, Im ST, Petrov IA, Dviskaya ML, Fedotova EV, Ranson KJ (2017) Fir decline and mortality in the southern Siberian Mountains. Reg Environ Chang 17:803–812

    Google Scholar 

  • Kolb TE (2015) A new drought tipping point for conifer mortality. Environ Res Lett 10:031002

    Google Scholar 

  • Lebourgeois F, Gomez N, Pinto P, Merian P (2013) Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manag 303:61–71

    Google Scholar 

  • Liang E, Shao X, Kong Z, Lin J (2003) The extreme drought in the 1920s and its effect on tree growth deduced from tree ring analysis: a case study in North China. Ann For Sci 60:145–152

    Google Scholar 

  • Linares JC, Camarero JJ, Bowker MA, Ochoa V, Carreira JA (2010) Stand-structural effects on Heterobasidion abietinum-related mortality following drought events in Abies pinsapo. Oecologia 164:1107–1119

    PubMed  Google Scholar 

  • Liu Y, Kumar M, Katul GG, Porporat A (2019) Reduced resilience as an early warning signal of forest mortality. Nat Clim Chang 9:880–885

    Google Scholar 

  • Lloret F, Siscart D, Dalmases C (2004) Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob Chang Biol 10:2092–2099

    Google Scholar 

  • Lloret F, Lobo A, Estevan H, Maisongrande P, Vayreda J, Terradas J (2007) Woody plant richness and NDVI response to drought events in Catalonia (North Eastern Spain) forests. Ecology 88:2270–2279

    CAS  PubMed  Google Scholar 

  • Lloret F, Escudero A, Iriondo JM, Martínez-Vilalta J, Valladares F (2012) Extreme climatic events and vegetation: The role of stabilizing processes. Glob Chang Biol 18:797–805

    Google Scholar 

  • Lopez-Blanco C, Giallard MJ, Miracle RM, Vicente E (2012) Lake-level changes and fire history at Lagunillo del Tejo (Spain) during the last millennium: Climate or humans? The Holocene 22:551–560

    Google Scholar 

  • Loreau M, de Mazancourt C (2013) Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16:106–115

    PubMed  Google Scholar 

  • Magny M, Leroux A, Bichet V, Gauthier E, Richard H, Walter-Simonet AW (2012) Climate, vegetation and land use as drivers of Holocene sedimentation: A case study from Lake Saint-Point (Jura Mountains, eastern France). The Holocene 23:137–147

    Google Scholar 

  • Majumber S, Tamma K, Ramaswamy S, Guttal V (2019) Inferring critical thresholds of ecosystem transitions from spatial data. Ecology 100:e02722

    Google Scholar 

  • Malkisnon D, Wittenberg L, Beeri O, Barzolai R (2011) Effects of repeated fires on the structure, composition, and dynamics of Mediterranean Maquis: short- and long-term perspectives. Ecosystems 14:478–488

    Google Scholar 

  • van Mantgem PJ, Nesmith JCB, Keifer MB, Knapp EE, Flint A, Flint L (2013) Climatic stress increases forest fire severity across the western United States. Ecol Lett 16:1151–1156

    PubMed  Google Scholar 

  • Marchetti SB, Worrall JJ, Eager T (2011) Secondary insects and diseases contribute to sudden aspen decline in southwestern Colorado, USA. Can J For Res 41:2315–2325

    Google Scholar 

  • Martínez-Vilalta J, Lloret F (2016) Drought-induced vegetation shifts in terrestrial ecosystems. Glob Planet Chang 144:94–108

    Google Scholar 

  • Matías L, Abdelaziz M, Godoy O, Gómez-Aparicio L (2018) Disentangling the climatic and biotic factors driving changes in the dynamics of Quercus suber populations across the species’ latitudinal range. Div Distrib 25:524–535

    Google Scholar 

  • Matusick G, Ruthrof KX, Fontaine JB, Hardy GESJ (2016) Eucalyptus forest shows low structural resistance and resilience to climate change-type drought. J Veg Sci 27:493–503

    Google Scholar 

  • Mayle FE, Power MJ (2008) Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Phil Trans R Soc Lond B 363:1829–1838

    Google Scholar 

  • Mayle FE, Beerling DJ, Gosling WD, Bush MB (2004) Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Phil Trans R Soc Lond B 359:499–514

    CAS  Google Scholar 

  • McDowell NG et al (2008) Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol 178:719–739

    PubMed  Google Scholar 

  • McDowell N et al (2014) Global satellite monitoring of climate-induced vegetation disturbances. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2014.10.008

  • McIntyre PJ, Thorne JH, Dolanc CR, Flint AL, Flint LE, Kelly M, Ackerly DD (2015) Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proc Natl Acad Sci 112:1458–1463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meddens AJH, Hicke JA, Macalady AK, Buotte PC, Cowles TR, Allen CD (2015) Tansley insight: patterns and causes of observed pinyon pine mortality in the southwestern United States. New Phytol 206:91–97

    PubMed  Google Scholar 

  • Meir P, Mencuccini M, Binks O, Lola da Costa A, Ferreira L, Rowland L (2018) Short-term effects of drought on tropical forest do not fully predict impacts of repeated or long-term drought: gas exchange versus growth. Phil Trans R Soc Lond B 373:1760

    Google Scholar 

  • Menking KM, Peteet DM, Anderson RY (2012) Late-glacial and Holocene vegetation and climate variability, including major droughts, in the Sky Lakes region of southeastern New York State. Palaeog Palaeocl Plaeoecol 353–355:45–59

    Google Scholar 

  • Messier C, Bauhus J, Doyon F, Maure F, Sousa-Silva R, Nolet P, Mina M, Aquilue N, Fortin MJ, Puettmann K (2019) The functional complex network approach to foster forest resilience to global changes. Forest Ecosystem 6:21

    Google Scholar 

  • Michaelian M, Hogg EH, Hall RJ, Arsenault E (2011) Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob Chang Biol 17:2084–2094

    PubMed Central  Google Scholar 

  • Millar CL, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: Managing in the face of uncertainty. Ecol Appl 17:2145–2151

    PubMed  Google Scholar 

  • Mitchell PJ, O’Grady AP, Hayes KR, Pinkard EA (2014) Exposure of trees to drought-induced die-off is defined by a common climatic threshold across different vegetation types. Ecol Evol 4:1088–1101

    PubMed  PubMed Central  Google Scholar 

  • Mori AS, Lertzman KP, Gustafsson L (2017) Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J Appl Ecol 54:12–27

    Google Scholar 

  • Moritz MA, Parisien MA, Barllori E, Krawchuk v DJ, Ganz DJ, Hayhoe K (2012) Climate change and disruptions to global fire activity. Ecosphere 3:article:49

    Google Scholar 

  • Newbery DM, Lingenfelder M (2008) Plurality of tree species responses to drought perturbation in Bornean tropical rain forest. In: Valk AGVD (ed) Forest Ecology. Springer, pp 147–167

    Google Scholar 

  • Noss RG, Franklin JF, Baker WL, Schoennagel T, Moyle PB (2006) Managing fire-prone forests in the western United States. Front Ecol Environ 4:481–487

    Google Scholar 

  • Paine RT, Tegner MJ, Johnson EA (1998) Compounded perturbations yield ecological surprises. Ecosystems 1:535–545

    Google Scholar 

  • Pausas JG, Blade C, Valdecantos A, Seva JP, Fuentes D, Alloza JA, Vilagrosa A, Bautista S, Cortina J, Vallejo R (2004) Pines and oaks in the restoration of Mediterranean landscapes of Spain: New perspectives for an old practice—a review. Plant Ecol 171:209–220

    Google Scholar 

  • Phillips OL et al (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347

    CAS  PubMed  Google Scholar 

  • Pile LS, Meyer MD, Rojas R, Roe O, Smith MT (2019) Drought impacts and compounding mortality on forest rees in the Southern Sierra Nevada. Forests 10:237. https://doi.org/10.3390/f10030237

    Article  Google Scholar 

  • Ponce Campos GE et al (2013) Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494:349–352

    CAS  PubMed  Google Scholar 

  • Raffa W, Kenneth F, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Kolb TE (2015) Responses of tree-killing bark beetles to a changing climate. In: Björkman C, Niemelä P (eds) Climate change and insect pests, CABI Climate Change Series 7, pp 173–201

    Google Scholar 

  • Redmond MD, Cobb NS, Clifford MJ, Barger NN (2015) Woodland recovery following drought-induced tree mortality across an environmental stress gradient. Glob Chang Biol 21:3685–3695

    PubMed  Google Scholar 

  • Rietkerk M, Dekker SC, de Ruiter P, van de Koppel J (2004) Self-Organized Patchiness and Catastrophic Shifts in Ecosystems. Science 305:1926–1929

    CAS  Google Scholar 

  • Rigling A et al (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob Chang Biol 19:229–240

    PubMed  Google Scholar 

  • Rogers BM, Solvik K, Hogg EH, Ju J, Masek JG, Michaelian M, Berner LT, Goetz SJ (2018) Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Glob Chang Biol 24:2284–2304

    PubMed  Google Scholar 

  • Rull V, Montoya E, Nogué S, Vegas-Vilarrúbia T, Safont E (2013) Ecological palaeoecology in the neotropical Gran Sabana region: Long-term records of vegetation dynamics as a basis for ecological hypothesis testing. Persp Plant Ecol Evol Syst 15:338–359

    Google Scholar 

  • Sánchez-Pinillos M, Leduc L, Ameztegui A, Kneeshaw D, Lloret F, Coll L (2019) Resistance, resilience or change: post-disturbance dynamics of boreal forests after insect outbreaks. Ecosystems 22:886–1901

    Google Scholar 

  • Savage M, Mast JN (2005) How resilient are southwestern ponderosa pine forests after crown fires? Can J For Res 35:967–977

    Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656

    Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter S, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59

    CAS  PubMed  Google Scholar 

  • Scheffer M, Carpenter SR, Dakos V, van Nes EH (2015) Generic indicators of ecological resilience: inferring the change of a critical transition. Annu Rev Ecol Evol Syst 46:145–167

    Google Scholar 

  • Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol Lett 14:397–406

    PubMed  Google Scholar 

  • Schwantes AM, Swenson JJ, González-Roglich M, Johnson DM, Domec JC, Jackson RB (2017) Measuring canopy loss and climatic thresholds from an extreme drought along a 5-fold precipitation gradient across Texas. Glob Chang Biol 23:5120–5135

    PubMed  Google Scholar 

  • Seidl R, Spies TA, Peterson DL, Stephens SL, Hicke JA (2016) Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. J Appl Ecol 53:120–129

    PubMed  PubMed Central  Google Scholar 

  • Seidl R et al (2017) Forest disturbances under climate change. Nat Clim Chan 7:395–402

    Google Scholar 

  • Serra-Diaz JM, Keenan TF, Ninyerola M, Sabaté S, Gracia C, Lloret F (2013) Geographical patterns of congruence and incongruence between correlative species distribution models and a process-based ecophysiological growth mode. J Biogeogr 40:1928–1938

    Google Scholar 

  • Serra-Diaz JM et al (2018) Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century. Sci Rep 8:6749

    PubMed  PubMed Central  Google Scholar 

  • Shuman BN, Newby P, Donnelly JP (2009) Abrupt climate change as an important agent of ecological change in the Northeast U.S. throughout the past 15,000 years. Quat Sci Rev 28:1693–1709

    Google Scholar 

  • Singer JS, Turnbull R, Foster M, Bettigole C, Frey BR, Downey MC, Covey KR, Ashton MS (2019) Sudden Aspen decline: a review of pattern and process in a changing climate. Forests 10:671. https://doi.org/10.3390/f10080671

    Article  Google Scholar 

  • Smith JM, Paritsis J, Veblen TT, Chapman TB (2015) Permanent forest plots show accelerating tree mortality in subalpine forests of the Colorado Front Range from 1982 to 2013. For Ecol Manag 341:8–17

    Google Scholar 

  • Sohn JA, Saha S, Bauhus J (2016) Potential of forest thinning to mitigate drought stress: a meta-analysis. For Ecol Manag 380:261–273

    Google Scholar 

  • Sommerfeld A et al (2018) Patterns and drivers of recent disturbances across the temperate forest biome. Nat Commun 9:4355

    PubMed  PubMed Central  Google Scholar 

  • Sousa-Silva R, Verheyen K, Ponette Q, Bay E, Sioen G, Titeux H, van de Peer T, van Meerbeek K, Muys B (2018) Tree diversity mitigates defoliation after a drought-induced tipping point. Glob Chang Biol 24:4304–4315

    PubMed  Google Scholar 

  • Stephenson NL, Das AJ, Ampersee NJ, Bulaon BM, Yee JL (2018) Which trees die during drought? The key role of insect host-tree selection. J Ecol 107:2383–2401

    Google Scholar 

  • Swetnam TW, Betancour JL (1998) Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J Clim 11:3128–3147

    Google Scholar 

  • Swindles GT et al (2017) Ecosystem state shifts during long-term development of an Amazonian peatland. Glob Chang Biol 24:738–757

    PubMed  Google Scholar 

  • Tafangenyasha C (1997) Tree loss in the Gonarezhou National Park (Zimbabwe) between 1970 and 1983. J Environ Manag 49:355–366

    Google Scholar 

  • Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947

    Google Scholar 

  • Tinner W, Lotter AF (2001) Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012). Geology 29:551–554

    Google Scholar 

  • Torrescano-Valle N, Islebe GA (2015) Holocene paleoecology, climate history and human influence in the southwestern Yucatan Peninsula. Rev Palaeobot Palynol 217:1–8

    Google Scholar 

  • Trenberth KE et al (2014) Global warming and changes in drought. Nat Clim Chan 4:17–22

    Google Scholar 

  • Trichon V, Hiernaux P, Walcker R, Mougin E (2018) The persistent decline of patterned woody vegetation: the tiger bush in the context of the regional Sahel greening trend. Glob Chang Biol 24:2633–2648

    PubMed  Google Scholar 

  • Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91:2833–2849

    PubMed  Google Scholar 

  • Usbeck T, Wohlgemuth T, Dobbertin M, Bürgi A, Pfister C, Rebetez M (2010) Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric For Meteorol 150:47–55

    Google Scholar 

  • Verbesselt J, Umlauf N, Hirota M, Holmgren M, Van Nes EH, Herold M, Zeileis A, Schffer M (2016) Remotely sensed resilience of tropical forests. Nat Clim Chan 6:1028–1032

    Google Scholar 

  • Vicente-Serrano SM, Begueria S, Lopez-Moreno JI (2010) A Multiscalar Drought Index Sensitive to Global Warming: the Standardized Precipitation Evapotranspiration Index. J Clim 23:1696–1718

    Google Scholar 

  • Vilà-Cabrera A, Martínez-Vilalta J, Vayreda J, Retana J (2011) Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 21:1162–1172

    PubMed  Google Scholar 

  • Villalba R, Veblen TT (1998) Influences of large-scale climatic variability on episodic tree mortality in Northern Patagonia. Ecology 79:2624–2640

    Google Scholar 

  • Williams JW, Shuman B, Bartlein PJ, Diffenbaugh NS, Webb IIIT (2010) Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38:135–138

    CAS  Google Scholar 

  • Williams JW, Blois JJ, Shuman BN (2011) Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J Ecol 99:664–677

    Google Scholar 

  • Xiong YM, D’Atri JJ, Fu SL, Xia HP, Seastedt TR (2011) Rapid soil organic matter loss from forest dieback in a subalpine coniferous ecosystem. Soil Biol Biochem 43:2450–2456

    CAS  Google Scholar 

  • Xu C, Liu H, Anenkhonov OA, Korolyuk AY, Sandanov DV, Balsanova LD, Naidanov BB, Wu X (2017) Long-term forest resilience to climate change indicated by mortality, regeneration, and growth in semiarid southern Siberia. Glob Chang Biol 23:2370–2382

    PubMed  Google Scholar 

  • Yang G, Wagg C, Veresoglou SD, Hempel S, Rillig MC (2018) How soil biota drive ecosystem stability. Trends Plant Sci 23:1057–1067

    CAS  PubMed  Google Scholar 

  • Zeeman BJ, Lunt ID, Morgan JW (2014) Can severe drought reverse woody plant encroachment in a temperate Australian woodland? J Veg Sci 25:928–936

    Google Scholar 

  • Zhang T, Niinemets Ü, Sheffield J, Lichstein JW (2018) Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556:99–102

    CAS  PubMed  Google Scholar 

  • Zhou G et al (2014) Substantial reorganization of China’s tropical and subtropical forests: Based on the permanent plots. Glob Chang Biol 20:240–250

    PubMed  Google Scholar 

  • Zuleta D, Duque A, Cardenas D, Muller-Landau HC, Davies SJ (2017) Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98:2538–2546

    PubMed  Google Scholar 

Download references

Acknowledgements

Contribution of T. Aakala, W. R.L. Anderegg, E. Aynekulu, D. P. Bendixsen, A. Bentouati, C. Bigler, C. J. Burk, J. J. Camarero, M. Colangelo, J. D. Coop, R. Fensham, M. L. Floyd, L. Galiano, J. L. Ganey, P. Gonzalez, A. L. Jacobsen, J. M. Kane, T. Kitzberger, J. C. Linares, S. B. Marchetti, G. Matusick, M. Michaelian, R. M. Navarro-Cerrillo, R. B. Pratt; M. D. Redmond, A. Rigling, F. Ripullone, G. Sangüesa-Barreda, Y. Sasal, S. Saura-Mas, M. L. Suarez, T. T. Veblen, A. Vilà-Cabrera, C. Vincke, and B. Zeeman, is recognized, by sharing information about forest regeneration after drought-induced events of forest mortality across temperate and boreal forests of the world. The authors benefited from Spanish Ministry of Economy and Competitiveness (BIOCLIM, CGL2015-67419-R; TIPMED CGL2017-87176-P) and AGAUR, Government of Catalonia (2017 SGR 1001) grants. The authors thank the editors (Pep Canadell and Rob Jackson) and Ernst-Detlef Schulze for their comments on previous versions of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Lloret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lloret, F., Batllori, E. (2021). Climate-Induced Global Forest Shifts due to Heatwave-Drought. In: Canadell, J.G., Jackson, R.B. (eds) Ecosystem Collapse and Climate Change. Ecological Studies, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-030-71330-0_7

Download citation

Publish with us

Policies and ethics