Skip to main content

Impact of Marine Heatwaves on Seagrass Ecosystems

Part of the Ecological Studies book series (ECOLSTUD,volume 241)

Abstract

Seagrass meadows deliver important ecosystem services such as nutrient cycling, enhanced biodiversity, and contribution to climate change mitigation and adaption through carbon sequestration and coastal protection. Seagrasses, however, are facing the impacts of ocean warming and marine heatwaves, which are altering their ecological structure and function. Shifts in species composition, mass mortality events, and loss of ecosystem complexity after sudden extreme climate events are increasingly common, weakening the ecosystem services they provide. In the west coast of Australia, Shark Bay holds between 0.7 and 2.4% of global seagrass extent (>4300 km2), but in the austral summer of 2010/2011, the Ningaloo El Niño marine heatwave resulted in the collapse of ~1300 km2 of seagrass ecosystem extent. The loss of the seagrass canopy resulted in the erosion and the likely remineralization of ancient carbon stocks into 2–4 Tg CO2-eq over 6 years following seagrass loss, increasing emissions from land-use change in Australia by 4–8% per annum. Seagrass collapse at Shark Bay also impacted marine food webs, including dugongs, dolphins, cormorants, fish communities, and invertebrates. With increasing recurrence and intensity of marine heatwaves, seagrass resilience is being compromised, underlining the need to implement conservation strategies. Such strategies must precede irreversible climate change-driven tipping points in ecosystem functioning and collapse and result from synchronized efforts involving science, policy, and stakeholders. Management should aim to maintain or enhance the resilience of seagrasses, and using propagation material from heatwave-resistant meadows to restore impacted regions arises as a challenging but promising solution against climate change threats. Although scientific evidence points to severe impacts of extreme climate events on seagrass ecosystems, the occurrence of seagrass assemblages across the planet and the capacity of humans to modify the environment sheds some light on the capability of seagrasses to adapt to changing ecological niches.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-71330-0_13
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-71330-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4
Fig. 13.5

References

  • Al-Haj AN, Fulweiler RW (2020) A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob Chang Biol 26:2988–3005

    PubMed  Google Scholar 

  • Alheit J, Bakun A (2010) Population synchronies within and between ocean basins: apparent teleconnections and implications as to physical–biological linkage mechanisms. J Mar Syst 79:267–285

    Google Scholar 

  • Arias-Ortiz A, Serrano O, Masqué P, Lavery PS, Mueller U, Kendrick GA, Rozaimi M, Esteban A, Fourqurean JW, Marba N, Mateo MA, Murray K, Rule MJ, Duarte CM (2018) A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat Clim Chang 8:338

    CAS  Google Scholar 

  • Atwood TB, Connolly RM, Ritchie EG, Lovelock CE, Heithaus MR, Hays GC, Fourqurean JW, Macreadie PI (2015) Predators help protect carbon stocks in blue carbon ecosystems. Nat Clim Chang 5:1038–1045

    Google Scholar 

  • Bayraktarov E, Saunders MI, Abdullah S, Mills M, Beher J, Possingham HP, Mumby PJ, Lovelock CE (2016) The cost and feasibility of marine coastal restoration. Ecol Appl 26:1055–1074

    PubMed  Google Scholar 

  • Beca-Carretero P, Guihéneuf F, Marín-Guirao L, Bernardeau-Esteller J, García-Muñoz R, Stengel DB, Ruiz JM (2018) Effects of an experimental heat wave on fatty acid composition in two Mediterranean seagrass species. Mar Pollut Bull 134:27–37

    CAS  PubMed  Google Scholar 

  • Bufarale G, Collins LB (2015) Stratigraphic architecture and evolution of a barrier seagrass bank in the mid-late Holocene, Shark Bay, Australia. Mar Geol 359:1–21

    Google Scholar 

  • Burling MC, Pattiaratchi CB, Ivey GN (2003) The tidal regime of Shark Bay, Western Australia. Estuar Coast Shelf Sci 57:725–735

    Google Scholar 

  • Cai W, Wang G, Santoso A, McPhaden MJ, Wu L, Jin FF, Timmermann A, Collins M, Vecchi G, Lengaigne M, England MH, Dommenget D, Takahashi K, Guilyardi E (2015) Increased frequency of extreme La Niña events under greenhouse warming. Nat Clim Chang 5:132–137

    Google Scholar 

  • Caputi N, de Lestang S, Feng M, Pearce A (2009) Seasonal variation in the long-term warming trend in water temperature off the Western Australian coast. Mar Freshw Res 60:129–139

    Google Scholar 

  • Crook DA, Lowe WH, Allendorf FW, Erős T, Finn DS, Gillanders BM, Hadwen WL, Harrod C, Hermoso V, Jennings S, Kilada RW, Nagelkerken I, Hansen MM, Page TJ, Riginos C, Fry B, Hughes JM (2015) Human effects on ecological connectivity in aquatic ecosystems: integrating scientific approaches to support management and mitigation. Sci Total Environ 534:52–64

    CAS  PubMed  Google Scholar 

  • Cullen-Unsworth LC, Nordlund LM, Paddock J, Baker S, McKenzie LJ, Unsworth RK (2014) Seagrass meadows globally as a coupled social–ecological system: implications for human wellbeing. Mar Pollut Bull 83:387–397

    CAS  PubMed  Google Scholar 

  • de los Santos CB, Krause-Jensen D, Alcoverro T, Marbà N, Duarte CM, van Katwijk MM, Perez M, Romero J, Sanchez-Lizaso JL, Roca G, Jankowska E, Perez-Llorens JL, Fournier J, Montefalcone M, Pergent G, Ruiz JM, Cabaco S, Cook K, Wilkes RJ, Moy FE, GMR T, Seglar X, de Jong DJ, Fernandez-Torquemada Y, Auby I, Vergara JJ, Santos R (2019) Recent trend reversal for declining European seagrass meadows. Nat Commun 10:1–8

    Google Scholar 

  • Dowling R (1991) Tourism and the natural environment Shark Bay, Western Australia. Tour Recreat Res 16:44–48

    Google Scholar 

  • Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3:961–968

    CAS  Google Scholar 

  • Duke NC, Kovacs JM, Griffiths AD, Preece L, Hill DJ, Van Oosterzee P, Mackenzie J, Morning HS, Burrow D (2017) Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar Freshw Res 68:1816–1829

    Google Scholar 

  • Feller IC, Friess DA, Krauss KW, Lewis RR (2017) The state of the world’s mangroves in the 21st century under climate change. Hydrobiologia 803:1–12

    Google Scholar 

  • Feng M, Biastoch A, Böning C, Caputi N, Meyers G (2008) Seasonal and interannual variations of upper ocean heat balance off the west coast of Australia. J Geophys Res Oceans 113:C12025

    Google Scholar 

  • Feng M, McPhaden MJ, Xie S-P, Hafner J (2013) La Nina forces unprecedented Leeuwin current warming in 2011. Sci Rep 3:1277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca MS (2011) Addy revisited: what has changed with seagrass restoration in 64 years? Ecol Restor 29:73–81

    Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509

    CAS  Google Scholar 

  • Frölicher TL, Fischer EM, Gruber N (2018) Marine heatwaves under global warming. Nature 560:360–364

    PubMed  Google Scholar 

  • Gacia E, Granata TC, Duarte CM (1999) An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat Bot 65:255–268

    Google Scholar 

  • Henson SA, Beaulieu C, Ilyina T, John JG, Long M, Séférian R, Tjiputra J, Sarmiento JL (2017) Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat Commun 8:1–9

    Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    CAS  PubMed  Google Scholar 

  • Hoffman R (2014) Alien benthic algae and seagrasses in the Mediterranean Sea and their connection to global warming. In: The mediterranean sea. Springer, Dordrecht, pp 159–181

    Google Scholar 

  • Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci 101:8998–9002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JB, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82–90

    CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018) Global warming transforms coral reef assemblages. Nature 556:492–496

    CAS  PubMed  Google Scholar 

  • Hyndes GA, Heck KL Jr, Vergés A, Harvey ES, Kendrick GA, Lavery PS, McMahon K, Orth RJ, Pearce A, Vanderklift M, Wernberg T, Whiting S, Wilson S (2017) Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66:938–948

    Google Scholar 

  • Jordà G, Marbà N, Duarte CM (2012) Mediterranean seagrass vulnerable to regional climate warming. Nat Clim Chang 2:821–824

    Google Scholar 

  • Kelleway JJ, Saintilan N, Macreadie PI, Skilbeck CG, Zawadzki A, Ralph PJ (2016) Seventy years of continuous encroachment substantially increases ‘blue carbon’capacity as mangroves replace intertidal salt marshes. Glob Chang Biol 22:1097–1109

    PubMed  Google Scholar 

  • Kendrick GA, Nowicki RJ, Olsen YS, Strydom S, Fraser MW, Sinclair EA, Statton J, Hovey RK, Thomson JA, Nurkholder DA, McMahon KM, Kilminster K, Hetzel Y, Fourqurean JW, Heithaus MR, Orth RJ (2019) A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front Mar Sci 6:455

    Google Scholar 

  • Kenworthy WJ, Wyllie-Echeverria S, Coles RG, Pergent G, Pergent-Martini C (2007) Seagrass conservation biology: an interdisciplinary science for protection of the seagrass biome. In: Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 595–623

    Google Scholar 

  • Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P, Glasby T, Udy J (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109

    CAS  PubMed  Google Scholar 

  • Krumhansl KA, Okamoto DK, Rassweiler A, Novak M, Bolton JJ, Cavanaugh KC, Connell SD, Johnson CR, Konar B, Ling SD, Micheli F, Norderhaug KM, Pérez-Matus A, Sousa-Pinto I, Reed DC, Salomon AK, Shears NT, Wernberg T, Anderson RJ, Barrett NS, Buschmann AH, Carr MH, Caselle JE, Derrien-Courtel S, Edgar GJ, Edwards M, Estes JA, Goodwin C, Kenner MC, Kushner DJ, Moy FE, Nunn J, Steneck RS, Vásquez J, Watson J, Witman JD, Byrnes JEK (2016) Global patterns of kelp forest change over the past half-century. Proc Natl Acad Sci 113:13785–13790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055

    CAS  PubMed  Google Scholar 

  • Lovelock CE, Fourqurean JW, Morris JT (2017) Modeled CO2 emissions from coastal wetland transitions to other land uses: tidal marshes, mangrove forests, and seagrass beds. Front Mar Sci 4:143

    Google Scholar 

  • Marbà N, Duarte CM (2010) Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob Chang Biol 16:2366–2375

    Google Scholar 

  • Marbà N, Krause-Jensen D, Masqué P, Duarte CM (2018) Expanding Greenland seagrass meadows contribute new sediment carbon sinks. Sci Rep 8:1–8

    Google Scholar 

  • Marín-Guirao L, Ruiz JM, Dattolo E, Garcia-Munoz R, Procaccini G (2016) Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Sci Rep 6:28615

    PubMed  PubMed Central  Google Scholar 

  • Marín-Guirao L, Entrambasaguas L, Dattolo E, Ruiz JM, Procaccini G (2017) Molecular mechanisms behind the physiological resistance to intense transient warming in an iconic marine plant. Front Plant Sci 8:1142

    PubMed  PubMed Central  Google Scholar 

  • Mateo MA, Romeo J, Pérez M, Littler MM, Littler DS (1997) Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar Coast Shelf Sci 44:103–110

    Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745

    CAS  PubMed  Google Scholar 

  • Montefalcone M, Vassallo P, Gatti G, Parravicini V, Paoli C, Morri C, Bianchi CN (2015) The exergy of a phase shift: ecosystem functioning loss in seagrass meadows of the Mediterranean Sea. Estuar Coast Shelf Sci 156:186–194

    Google Scholar 

  • Murray R, Erler DV, Rosentreter J, Wells NS, Eyre BD (2020) Seasonal and spatial controls on N2O concentrations and emissions in low-nitrogen estuaries: evidence from three tropical systems. Mar Chem 221:103779

    CAS  Google Scholar 

  • Nowicki RJ, Thomson JA, Burkholder DA, Fourqurean JW, Heithaus MR (2017) Predicting seagrass recovery times and their implications following an extreme climate event. Mar Ecol Prog Ser 567:79–93

    Google Scholar 

  • Nowicki R, Heithaus M, Thomson J, Burkholder D, Gastrich K, Wirsing A (2019) Indirect legacy effects of an extreme climatic event on a marine megafaunal community. Ecol Monogr 89:e01365

    Google Scholar 

  • O’Brien KR, Waycott M, Maxwell P, Kendrick GA, Udy JW, Ferguson AJ, Kilminster K, Scanes P, McKenzie LJ, McMahon K, Adams MP, Samper-Villarreal J, Collier C, Lyons M, Mumby PJ, Radke L, Christianen MJA, Dennison WC (2018) Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Mar Pollut Bull 134:166–176

    PubMed  Google Scholar 

  • Oliver EC, Donat MG, Burrows MT, Moore PJ, Smale DA, Alexander LV, Benthuysen JA, Feng M, Gupta AS, Hobday AJ, Holbrook NJ, Perkins-Kirkpatrick SE, Scannell HA, Straub SC, Wernberg T (2018) Longer and more frequent marine heatwaves over the past century. Nat Commun 9:1–12

    CAS  Google Scholar 

  • Orth RJ, Carruthers TJ, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Google Scholar 

  • Pearce A, Feng M (2007) Observations of warming on the Western Australian continental shelf. Mar Freshw Res 58:914–920

    Google Scholar 

  • Pearce AF, Lenanton R, Jackson G, Moore J, Feng M, Gaughan D (2011) The “marine heat wave” off Western Australia during the summer of 2010/11 (p. 40). Western Australian fisheries and marine research laboratories

    Google Scholar 

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte CJB, Strugnell JM, Sunday JM, Tuanmu M-N, Vergés A, Villanueva C, Wernberg T, Wapstra E, Williams SE (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human Well-being. Science 355:eaai9214

    PubMed  Google Scholar 

  • Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marbà N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PloS One 7:e43542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Chang 3:919–925

    Google Scholar 

  • Reusch TB, Ehlers A, Hämmerli A, Worm B (2005) Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc Natl Acad Sci 102:2826–2831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seddon S, Connolly RM, Edyvane KS (2000) Large-scale seagrass dieback in northern Spencer gulf, South Australia. Aquat Bot 66:297–310

    Google Scholar 

  • Shields EC, Parrish D, Moore K (2019) Short-term temperature stress results in seagrass community shift in a temperate estuary. Estuar Coasts 42:755–764

    Google Scholar 

  • Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calumponge HP, Carruthers TJB, Coles RG, Dennison WC, Erftemeijer PLA, Fortes MD, Freeman AS, Jagtap TG, Kamal AHM, Kendrick GA, Kenworthy WJ, La Nafie YA, Zieman JC (2011) Extinction risk assessment of the world’s seagrass species. Biol Conserv 144:1961–1971

    Google Scholar 

  • Strydom S, Murray K, Wilson S, Huntley B, Rule M, Heithaus M, Bessey C, Kendrick GA, Burkholder D, Fraser MW, Zdunic K (2020) Too hot to handle: unprecedented seagrass death driven by marine heatwave in a world heritage area. Glob Chang Biol 26:3525–3538

    PubMed  Google Scholar 

  • Sullivan BK, Trevathan-Tackett SM, Neuhauser S, Govers LL (2018) Host-pathogen dynamics of seagrass diseases under future global change. Mar Pollut Bull 134:75–88

    CAS  PubMed  Google Scholar 

  • Unsworth RK, McKenzie LJ, Nordlund LM, Cullen-Unsworth LC (2018) A changing climate for seagrass conservation? Curr Biol 28:R1229–R1232

    CAS  PubMed  Google Scholar 

  • Van der Werf GR, Morton DC, DeFries RS, Olivier JG, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738

    Google Scholar 

  • Van Katwijk MM, Bos AR, De Jonge VN, Hanssen LSAM, Hermus DCR, De Jong DJ (2009) Guidelines for seagrass restoration: importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Mar Pollut Bull 58:179–188

    PubMed  Google Scholar 

  • Vergés A, Steinberg PD, Hay ME, Poore AG, Campbell AH, Ballesteros E, Heck KL, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B Biol Sci 281:20140846

    Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106:12377–12381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, De Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Chang 3:78–82

    Google Scholar 

  • Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK, Harvey ES, Holmes TH, Kendrick GA, Radford B, Santana-Garcon J, Saunders BJ, Smale DA, Thomsen MS, Tuckett CA, Tuya F, Vanderklift MA, Wilson S (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–172

    CAS  PubMed  Google Scholar 

  • Wild S, Krützen M, Rankin RW, Hoppitt WJ, Gerber L, Allen SJ (2019) Long-term decline in survival and reproduction of dolphins following a marine heatwave. Curr Biol 29:R239–R240

    CAS  PubMed  Google Scholar 

  • Wyatt AS, Hewitt CL, Walker DI, Ward TJ (2005) Marine introductions in the Shark Bay world heritage property, Western Australia: a preliminary assessment. Divers Distrib 11:33–44

    Google Scholar 

Download references

Acknowledgments

O.S. was supported by an ARC DECRA DE170101524. AA-O was supported by the NOAA C&GC Postdoctoral Fellowship Program administered by UCAR-CPAESS under award #NA18NWS4620043B. GAK was supported by an ARC Discovery DP180100668. We thank the editors Pep Canadell, Rob Jackson, and Detlef Schulze for their comments that improved this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Serrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Serrano, O., Arias-Ortiz, A., Duarte, C.M., Kendrick, G.A., Lavery, P.S. (2021). Impact of Marine Heatwaves on Seagrass Ecosystems. In: Canadell, J.G., Jackson, R.B. (eds) Ecosystem Collapse and Climate Change. Ecological Studies, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-030-71330-0_13

Download citation