Skip to main content

Ophthalmology of Rhynchocephalia: Tuatara

  • Chapter
  • First Online:
Wild and Exotic Animal Ophthalmology
  • 1535 Accesses

Abstract

The order Rhynchocephalia once contained a diverse group of lizard-like genera, the majority of which are now extinct. Only one known species is still in existence today, the tuatara (Sphenodon punctatus). (Cree 2014) Therefore, many consider the tuatara to be a “living fossil” or a “living dinosaur” (Gans 1983). The former description would suggest the tuatara has been unchanged since first appearing in the Mesozoic era and has therefore fallen out of favor (Cree 2014). Like most Rhynchocephalians, tuatara are members of the family Sphenodontidae, characterized by unique dentition creating a beak-like structure on the end of the snout. Tuatara are native to New Zealand, with all members belonging to a single species (S. punctatus) with geographic variants, although the Brothers Island subpopulation was briefly classified as its own species (S. guntheri) (Hay et al. 2010). The name tuatara is derived from Māori and translates to “peaks on the back,” in reference to the animal’s dorsal crest and tail spine scales (Cree 2014). Once a thriving species, human encroachment and introduction of non-native predators caused the disappearance of wild tuatara from mainland New Zealand. Members survive in the wild on numerous offshore islands and in captivity in mainland sanctuaries as well as zoos across the globe (Blanchard 2002a). The species is under active conservation management and listed in CITES Appendix I (Gaze 2001). Tuatara can live up to 80 years or more in the wild or captivity (Cree 2014). Size varies by sex (males larger than females) and geographic location, with animals from larger islands often being larger than individuals kept in other habitats. The species is considered nocturnal, emerging during the daytime to bask in the sun, with juveniles being more active during the daytime than adults (Gaze 2001; Terezow et al. 2008). Hunting behavior has been demonstrated at light levels of 1/50th that of a full moon, however, not in total darkness (Meyer-Rochow 1988; Meyer-Rochow and Teh 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander S (2017) Aspects of the pharmacokinetics of itraconazole and voriconazole in the tuatara (Sphenodon punctatus) and application in the treatment of an emerging fungal disease. Doctoral dissertation, Murdoch University

    Google Scholar 

  • Alexander S (2019a) Tuatara taxonomy, anatomy, and physiology. In: Divers SJ, Stahl SJ (eds) Mader’s reptile and amphibian medicine and surgery, 3rd edn. Elsevier, St. Louis, pp 83–85

    Google Scholar 

  • Alexander S (2019b) Tuatara. In: Divers SJ, Stahl SJ (eds) Mader’s reptile and amphibian medicine and surgery, 3rd edn. Elsevier, St. Louis, pp 199–200

    Google Scholar 

  • Bage F (1912) On the histological structure of the retina of the lateral eyes of Sphenodon punctatus, with special reference to the sense-cells. Q J Microsc Sci 57:305–328

    Google Scholar 

  • Banzato T, Hellebuyck T, Van Caelenberg A, Saunders JH, Zotti A (2013) A review of diagnostic imaging of snakes and lizards. Vet Rec 173(2):43–49

    CAS  PubMed  Google Scholar 

  • Bellairs AD’A, Boyd JD (1947) The lachrymal apparatus in lizards and snakes. 1. The brille, the orbital glands, lachrymal canaliculi and origin of the lachrymal duct. Proc Zool Soc London 117:81–108

    Google Scholar 

  • Bellairs AD’A, Boyd JD (1950) The lachrymal apparatus in lizards and snakes. 2. The anterior part of the lachrymal duct and its relationship with the palate and with the nasal and vomeronasal organs. Proc Zool Soc London 120:269–310

    Google Scholar 

  • Blanchard B (2002a) Tuatara captive management plan, Threatened species occasional publication 21A. Department of Conservation, Wellington, New Zealand

    Google Scholar 

  • Blanchard B (2002b) Tuatara husbandry manual, Threatened species occasional publication 21B. Tuatara Recovery Group. Department of Conservation, Wellington, New Zealand

    Google Scholar 

  • Cree A (2014) Tuatara: biology and conservation of a venerable survivor. Canterbury University Press, Christchurch

    Google Scholar 

  • Daza JD, Bauer AM (2010) The circumorbital bones of the Gekkota (Reptilia: Squamata). Anat Rec 293(3):402–413

    Google Scholar 

  • Dendy A (1911) On the structure, development and morphological interpretation of the pineal organs and adjacent parts of the brain in the tuatara (Sphenodon punctatus). Philos Trans R Soc London B 201:227–331

    Google Scholar 

  • Evans SE (2008) The skull of lizards and tuatara. In: Gans C, Gaunt AS, Adler K (eds) Biology of the Reptilia, Morphology H. The skull of lepidosauria, vol 20. Society for the Study of Amphibians and Reptiles, New York, pp 1–347

    Google Scholar 

  • Firth BT, Thompson MB, Kennaway DJ, Belan I (1989) Thermal sensitivity of reptilian melatonin rhythms: “cold” tuatara vs. “warm” skink. Am J Phys 256:R1160–R1163

    CAS  Google Scholar 

  • Gans C (1983) Is Sphenodon punctatus a maladapted relict? In: Rhodin AGJ, Miyata K (eds) Advances in herpetology and evolutionary biology. Essays in honor of Ernest E. Williams. Museum of Comparative Zoology, Cambridge, MA, pp 613–620

    Google Scholar 

  • Gasson W (1947) The normal and parietal eyes of the tuatara. Optician 113:261–265

    CAS  PubMed  Google Scholar 

  • Gaze P (2001) Tuatara recovery plan (2001–2011), Threatened species recovery plan 47. Department of Conservation, Wellington, New Zealand

    Google Scholar 

  • Gunther A (1867) Contribution to the anatomy of hatteria (rhynchocephalus, Owen). Philos Trans R Soc London 157:595–629. + plates XXVI–XXVIII

    Google Scholar 

  • Hay JM, Sarre SD, Lambert DM, Allendorf FW, Daugherty CH (2010) Genetic diversity and taxonomy: a reassessment of species designation in tuatara (Sphenodon: Reptilia). Conserv Genet 11(3):1063–1081

    Google Scholar 

  • Hoffmann I (2011) Eye. In: Krautwald-Junghanns ME, Pees M, Reese S, Tully T (eds) Diagnostic imaging of exotic pets: birds, small mammals, reptiles. Schlütersche, Hannover, pp 354–357

    Google Scholar 

  • Hoffmann I, Pees M (2011) Special diagnostics, pathological findings: other organ systems, space-occupying lesions. In: Krautwald-Junghanns ME, Pees M, Reese S, Tully T (eds) Diagnostic imaging of exotic pets: birds, small mammals, reptiles. Schlütersche, Hannover, pp 430–436

    Google Scholar 

  • Humphrey S, Alexander S, Ha HJ (2016) Detection of Paranannizziopsis australasiensis in tuatara (Sphenodon punctatus) using fungal culture and a generic fungal PCR. N Z Vet J 64(5):298–300

    CAS  PubMed  Google Scholar 

  • Ireland LC, Gans C (1977) Optokinetic behavior of the tuatara, Sphenodon punctatus. Herpetologica 33(3):339–344

    Google Scholar 

  • Jones MEH, O’Higgins P, Fagian MJ, Evan SE, Curtis N (2012) Shearing mechanics and the influence of a flexible symphysis during oral food processing in Sphenodon (Lepidosauria: Rhynchocephalia). Anat Rec 295:1075–1091

    Google Scholar 

  • Kiefer I, Pees M (2011) Computed tomography (CT). In: Krautwald-Junghanns ME, Pees M, Reese S, Tully T (eds) Diagnostic imaging of exotic pets: birds, small mammals, reptiles. Schlütersche, Hannover, pp 358–366

    Google Scholar 

  • Lawton MPC (2019) Ophthalmology. In: Divers SJ, Stahl SJ (eds) Mader’s reptile and amphibian medicine and surgery, 3rd edn. Elsevier, St. Louis, pp 721–735

    Google Scholar 

  • Mann I (1932) A demonstration of the structure of the lateral eyes of the adult Sphenodon. Proc R Soc Med 25(6):834–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mann I (1933) Notes on the lateral eyes of Sphenodon with special reference to the macular region. Br J Ophthalmol 17:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masters NJ, Alexander S, Jackson B, Sigler L, Chatterton J, Harvey C, Gibson R, Humphrey S, Rawdon TG, Spence RP, Ha HJ, McInnes K, Jakob-Hoff R (2016) Dermatomycosis caused by Paranannizziopsis australasiensis in five tuatara (Sphenodon punctatus) and a coastal bearded dragon (Pogona barbata) in a zoological collection in New Zealand. N Z Vet J 64(5):301–307

    CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB (1988) Observations on the behaviour of young tuatara Sphenodon punctatus in conditions of total darkness. Tuatara 30:36–38

    Google Scholar 

  • Meyer-Rochow VB, Teh KL (1991) Visual predation by tuatara (Sphenodon punctatus) on the beach beetle (Chaerodes trachyscelides) as a selective force in the production of distinct colour morphs. Tuatara 31:1–8

    Google Scholar 

  • Meyer-Rochow VB, Wohlfahrt S, Ahnelt PK (2005) Photoreceptor cell types in the retina of the tuatara (Sphenodon punctatus) have cone characteristics. Micron 36(5):423–428

    CAS  PubMed  Google Scholar 

  • Osawa G (1898) Beiträge zur lehre von den sinnesorganen der Hatteria punctata. Arch Mikrosk Anat Entwicklungsmech 52:268–366

    Google Scholar 

  • Peterson EH (1992) Retinal structure. In: Gans C, Ulinski PS (eds) Biology of the Reptilia. Volume 17: neurology C. Sensorimotor integration. University of Chicago Press, Chicago, pp 1–135

    Google Scholar 

  • Quay WB (1979) The parietal eye-pineal complex. In: Gans C, Northcutt RG, Ulinski P (eds) Biology of the Reptilia, volume 9: neurology A. Academic Press, London, pp 245–406

    Google Scholar 

  • Robb J (1977) The tuatara. Meadowfield, Durham

    Google Scholar 

  • Schmid KL, Howland HC, Howland M (1992) Focusing and accommodation in tuatara (Sphenodon punctatus). J Comp Physiol A 170:263–266

    Google Scholar 

  • Schwab IR, O’Connor GR (2005) The lonely eye. Br J Ophthalmol 89(3):256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab IR, Yuen CK, Buyukmihci NC, Blankenship TN, Fitzgerald PG (2002) Evolution of the tapetum. Trans Am Ophthalmol Soc 100:187–200

    PubMed  PubMed Central  Google Scholar 

  • Shimizu T, Patton TB, Szafranski G, Butler AB (2009) Evolution of the visual system in reptiles and birds. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin, pp 1466–1472

    Google Scholar 

  • Stebbins RC (1958) An experimental study of the “third eye” of the tuatara. Copeia 1958(3):183–190

    Google Scholar 

  • Terezow MG, Nelson NJ, Markwell TJ (2008) Circadian emergence and movement of captive juvenile tuatara (Sphenodon spp.). N Z J Zool 35(3):205–216

    Google Scholar 

  • Tosini G, Menaker M (1996) The pineal complex and melatonin affect the expression of the daily rhythm of behavioral thermoregulation in the green iguana. J Comp Physiol A 179(1):135–142

    CAS  PubMed  Google Scholar 

  • Tyrrell CL, Cree A, Towns DR (2000) Variation in reproduction and condition of northern tuatara (Sphenodon punctatus punctatus) in the presence and absence of kiore. Science for Conservation No. 153. Department of Conservation, Wellington

    Google Scholar 

  • Underwood G (1970) The eye. In: Gans C, Parsons TS (eds) Biology of the Reptilia. Volume 2: morphology B. Academic Press, London, pp 1–97

    Google Scholar 

  • Underwood H (1992) Endogenous rhythms. In: Gans C, Crews D (eds) Biology of the Reptilia. Volume 18: physiology E. University of Chicago Press, Chicago, IL, pp 229–297

    Google Scholar 

  • Ung CY, Molteno AC (2004) An enigmatic eye: the histology of the tuatara pineal complex. Clin Exp Ophthalmol 32(6):614–618

    PubMed  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science

    Google Scholar 

  • Wellington Zoo (2016) Tuatara health check. https://wellingtonzoo.com/news/tuatara-health-check/

  • Wightman P, Pauwels F, Argandona AKG, Hunter S, Aguilar R (2015) Use of ultrasonography and computed tomography in the diagnosis of panophthalmitis in a tuatara (Sphenodon punctatus). J Herpetol Med Surg 25(3–4):78–81

    Google Scholar 

  • Wiles A (2018) The tuatara of New Zealand. Reptiles Magazine, 24 Jan 2018

    Google Scholar 

  • Wojtusiak RJ (1973) Some ethological and biological observations on the tuatara in laboratory conditions. Tuatara 20(2):97–109

    Google Scholar 

  • Yaryhin O, Werneburg I (2019) The origin of orbitotemporal diversity in lepidosaurs: insights from tuatara chondrocranial anatomy. Vertebr Zool 69(2):169–181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Smith Fleming .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fleming, K.S. (2022). Ophthalmology of Rhynchocephalia: Tuatara. In: Montiani-Ferreira, F., Moore, B.A., Ben-Shlomo, G. (eds) Wild and Exotic Animal Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-71302-7_9

Download citation

Publish with us

Policies and ethics