Skip to main content

Introduction to Ophthalmology of Aves

  • Chapter
  • First Online:
Wild and Exotic Animal Ophthalmology

Abstract

The status of avian ophthalmology, especially regarding clinical and surgical aspects, depends highly on furthering our understanding of the basic biology of the avian eye. Molecular biology and morphology provide the framework for phylogenetic, taxonomic, evolutionary, and ethological studies. Even though there are more similarities than differences in the molecular biology, morphology, physiology, and function comparing the avian eye to the eye of other vertebrates, knowledge of the specific differences is crucial for the veterinary ophthalmologists to succeed in diagnosing and treating avian ophthalmic conditions. All birds (Class Aves) have feathers and are divided among 23 orders. Some orders are more expansive and/or diverse than others. For instance, more than half of all birds belong to the order Passeriformes (Chap. 18), whereas the Struthioniformes (e.g., ostriches, emus, kiwi, Chap. 25) and Galliformes (pheasants, guinea fowl, Chap. 24) contain only a few species. The most commonly evaluated groups in veterinary ophthalmology include: Psittaciformes (e.g., macaws, parrots, parakeets, cockatoos; Chap. 17); Passeriformes (canaries, finches), those living in zoological gardens (e.g., Psittaciformes, Rhamphastids: toucans, toucanettes, Chap. 19), wild birds (Anseriformes: e.g., ducks, geese, swans, Chap. 24; Falconidae: e.g., hawks, falcons, eagles, Chap. 20; Strigiformes: e.g., owls, Chap. 20) and those used in sport (Falconidae).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balph MH (1975) Development of young Brewer’s blackbirds. Wilson Bull 87:207–230

    Google Scholar 

  • Barros JN, Mascaro VLDM, Gomes JÁP et al (2001) Citologia de impressão da superfície ocular: técnica de exame e de coloração. Arq Bras Oftalmol 64:127–131

    Google Scholar 

  • Barsotti G, Briganti A, Spratte JR et al (2013) Schirmir tear test type I readings and intraocular pressure values assessed by applanation tonometry (Tonopen XL) in normal eyes of four European species of birds of prey. Vet Ophthalmol 16:365–369

    PubMed  Google Scholar 

  • Baumhardt PE, Moore BA, Doppler M, Fernández-Juricic E (2014) Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors. Brain Behav Evol 83:181–198

    PubMed  Google Scholar 

  • Bayón A, Almela RM, Talavera J (2007) Avian ophthalmology. Eur J Companion Anim Pract 17:253–265

    Google Scholar 

  • Beckwith-Cohen B, Horowitz I, Bdolah-Abram T et al (2015) Differences in ocular parameters between diurnal and nocturnal raptors. Vet Ophthalmol 18:S98–S105

    Google Scholar 

  • Bellhorn RW (1997) Retinal nutritive systems. Semin Avian Exot Pet Med 6:108–118

    Google Scholar 

  • Bellhorn RW, Bellhorn MS (1975) The Avian Pecten—fluorescein permeability. Ophthalmic Res 7:1–7

    Google Scholar 

  • Bloch S, Martinoya C (1982) Comparing frontal and lateral viewing of the pigeon. I. Tachistoscopic visual acuity as a function of distance. Behav Brain Res 5:231–244

    CAS  PubMed  Google Scholar 

  • Bolzan AA, Brunelli TJ, Castro MB et al (2005) Conjunctival impression cytology in dog. Vet Ophthalmol 10:168–172

    Google Scholar 

  • Borges RF, Karym CFCKCF, Adriana BAAA, Cláudia MC, Cristiane DSHCS (2012) Estudo comparativo de métodos de coleta e coloração para citologia conjuntival em cães normais. Vet Zootec 19:381–391

    Google Scholar 

  • Bortolotti GR, Smits JE, Bird DM (2003) Iris color of American kestrels varies with age, sex, and exposure to PCBS. Physiol Biochem Zool 76:99–104

    PubMed  Google Scholar 

  • Brandão CVS, Minto BW, Rocha NS, Ranzani JJT (2002) Citologia conjuntival por impressão em gatos (Felis domestica). Revista Educação Continuada Med Vet Zootec CRMV-SP 5:41–47

    Google Scholar 

  • Bringmann A (2019) Structure and function of the bird fovea. Anat Histol Embryol 48:177–200

    PubMed  Google Scholar 

  • Brooke ML, Hanley S, Laughlin SB (1999) The scaling of eye size with body mass in birds. Proc R Soc B 266:405–412

    PubMed Central  Google Scholar 

  • Burns K (2014) Our other furry friends. Veterinarians tend to unique needs of exotic companion mammal. JAVMA NEWS, July 01. https://www.avma.org/javma-news/2014-07-01/our-other-furry-friends

  • Burns K (2019) Pet ownership stable, veterinary care variable. JAVMA NEWS, January 15

    Google Scholar 

  • Burns RB, Maxwell MH (1979) The structure of the Harderian and lacrimal gland ducts of the turkey, fowl, and duck. A light microscope study. J Anat 128:285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiasson RB, Ferris W (1968) The iris and associated structures of the Inca dove (Scardafella inca). Am Zool 8:818

    Google Scholar 

  • Clippinger TL, Bennett RA, Platt SR (2007) The avian neurologic examination and ancillary neurodiagnostic technique: a review update. Vet Clin North Am: Exot Anim Pract 10:803–836

    PubMed  Google Scholar 

  • Coimbra JP, Nolan PM, Collin SP et al (2012) Retinal ganglion cell topography and spatial resolving power in penguins. Brain Behav Evol 80:254–268

    PubMed  Google Scholar 

  • Coimbra JP, Collin SP, Hart NS (2014) Topographic specializations in the retinal ganglion cell layer correlate with lateralized visual behavior, ecology, and evolution in cockatoos. J Comp Neurol 522:3363–3385

    PubMed  Google Scholar 

  • Davidson M (1997) Ocular consequences of trauma in raptors. Semin Avian Exot Pet 6:121–130

    Google Scholar 

  • Dayan MO, Ozaydin TA (2013) Comparative morphometrical study of the pecten oculi in different avian species. Sci World J 2013:1–5

    Google Scholar 

  • de Moraes W, Ferreira TAC, Somma AT et al (2017) Doppler ultrasonography of the pectinis oculi artery in harpy eagles (Harpia harpyja). Open Vet J 7:70–74

    PubMed  PubMed Central  Google Scholar 

  • DeStefano ME, Mugnaini E (1997) Fine structure of the choroidal coat of the avian eye. Lymphatic vessels. Investig Ophthalmol Vis Sci 38:1241–1260

    CAS  Google Scholar 

  • Dogru M, Ishida K, Matsumoto Y et al (2006) Strip meniscometry: a new and simple method of tear meniscus evaluation. Investig Ophthalmol Vis Sci 47:1895–1901

    Google Scholar 

  • Dorrestein GM (2000) Nursing the sick bird. In: Tully TN Jr, Dorrestein GM, Jones AK (eds) Avian medicine. Reed Educational and Professional Publishing Ltd, Woburn, MA, pp 87–88

    Google Scholar 

  • Duke-Elder S (1958) System of ophthalmology, Vol. l. The eye in evolution. C. V. Mosby, St. Louis

    Google Scholar 

  • Evans HE, Martin GR (1993) Organa sensuum. In: Baumel JJ (ed) Handbook of avian anatomy: nomina anatomica avium. The Nuttal Ornithological Club, Cambridge, pp 585–611

    Google Scholar 

  • Falcão MSA, Monteiro RV, Carvalho CM et al (2017a) Reference values for selected ophthalmic tests of the blue-and-yellow macaw (Ara ararauna). Pesqui Vet Bras 37:389–394

    Google Scholar 

  • Falcão MSA, Monteiro RV, Oriá AP et al (2017b) Modified Schirmer tear test and rebound tonometry in blue-fronted Amazon parrot (Amazona aestiva). Pesqui Vet Bras 37:871–873

    Google Scholar 

  • Featherstone HJ, Heinrich CL (2013) Ophthalmic examination and diagnostics. In: Gelatt KN, Gilger BC, Kern TJ (eds) Veterinary ophthalmology. Wiley-Blackwell, Hoboken, pp 671–683

    Google Scholar 

  • Fernández-Juricic E et al (2011) Testing the terrain hypothesis: Canada geese see their world laterally and obliquely. Brain Behav Evol 77:147–158

    PubMed  Google Scholar 

  • Ferreira TA, Turner Giannico A, Montiani-Ferreira F (2016) Hemodynamics of the pectinis oculi artery in American pekin ducks (Anas platyrhynchos domestica). Vet Ophthalmol 19(5):409–413

    CAS  PubMed  Google Scholar 

  • Ferreira TAC, Fornazari G, Saldanha A et al (2019) The use of sulfur hexafluoride microbubbles for contrast-enhanced ocular ultrasonography of the pecten oculi in birds. Vet Ophthalmol 22:423–429

    CAS  PubMed  Google Scholar 

  • Fite KV, Rosenfield-Wessels S (1975) A comparative study of deep avian foveas. Brain Behav Evol 12:97–115

    CAS  PubMed  Google Scholar 

  • Fix AS, Arp LH (1991) Morphologic characterization of conjunctiva associated lymphoid tissue in chickens. Am J Vet Res 52:1852–1859

    CAS  PubMed  Google Scholar 

  • Galligan T, Mallord J, Prakash V, Shringarpure R, Kartik S, Dube A (2020) Trends in the availability of the vulture-toxic drug, diclofenac, and other NSAIDs in South Asia, as revealed by covert pharmacy surveys. Bird Conserv Int 31:337–353. https://doi.org/10.17863/CAM.55309

  • Gleeson MD, Moore BA, Edwards SG et al (2019) A novel herpesvirus associated with chronic superficial keratitis and proliferative conjunctivitis in a great horned owl (Bubo virginianus). Vet Ophthalmol 22:67–75

    CAS  PubMed  Google Scholar 

  • Golebiowski B, Papas E, Stapleton F (2011) Assessing the sensory function of the ocular surface: implications of use of a non-contact air jet aesthesiometer versus the Cochet-Bonnet aesthesiometer. Exp Eye Res 92:408–413

    CAS  PubMed  Google Scholar 

  • Gonçalves G, Leme M, Romagnolli P et al (2009) Biometria ultra-Sonográfica Bidimensional Em Tempo Real De Bulbo Ocular De Gatos Domésticos. Cienc Anim Bras 10:829–834

    Google Scholar 

  • Griggs AN, Yaw TJ, Haynes JS, Ben-Shlomo G, Tofflemire KL, Allbaugh RA (2016) Bioavailability and biochemical effects of diclofenac sodium 0.1% ophthalmic solution in the domestic chicken (Gallus gallus domesticus). Vet Ophthalmol 20:171–176

    PubMed  Google Scholar 

  • Gumpenberger M, Kolm G (2006) Ultrasonographic and computed tomographic examinations of the avian eye: physiologic appearance, pathologic findings, and comparative biometric measurement. Vet Radiol Ultrasound 47:492–502

    PubMed  Google Scholar 

  • Gunji M, Fujita M, Higuchi H (2013) Function of head-bobbing behavior in diving little grebes. J Comp Physiol A 199:703–709

    Google Scholar 

  • Hall MI (2008) The anatomical relationships between the avian eye, orbit and sclerotic ring: implications for inferring activity patterns in extinct birds. J Anat 212:781–794

    PubMed  PubMed Central  Google Scholar 

  • Hamano H, Kawabe H, Mitsunaga S (1982) Even field microscope for observation of the eye. Eye Contact Lens 8:81–86

    CAS  Google Scholar 

  • Hardy JW (1973) Age and sex differences in the black-and-blue jays of Middle America. J Field Ornithol 44:81–90

    Google Scholar 

  • Harkness L, Bennet-Clark HC (1978) The deep fovea as a focus indictor. Nature 272:814–816

    CAS  PubMed  Google Scholar 

  • Harris MC, Schorling JJ, Herring IP et al (2008) Ophthalmic examination findings in a colony of screech owls (Megascops asio). Vet Ophthalmol 11:186–192

    CAS  PubMed  Google Scholar 

  • Hart NS (2001) The visual ecology of avian photoreceptors. Prog Retin Eye Res 20:675–703

    CAS  PubMed  Google Scholar 

  • Hart NS (2004) Microspectrophotometry of visual pigments and oil droplets in a marine bird, the wedge-tailed shearwater Puffinus pacificus: topographic variations in photoreceptor spectral characteristics. J Exp Biol 207:1229–1240

    PubMed  Google Scholar 

  • Hida RY, Ohashi Y, Takano Y et al (2005) Elevated levels of human α-defensin in tears of patients with allergic conjunctival disease complicated by corneal lesions: detection by SELDI proteinchip system and quantification. Curr Eye Res 30:737–744

    Google Scholar 

  • Holt E, Rosenthal K, Shofer FS (2006) The phenol red thread tear test in large psittaciformes. Vet Ophthalmol 9:109–113

    PubMed  Google Scholar 

  • Hudon J, Muir AD (1996) Characterization of the reflective materials and organelles in the bright irides of North American blackbirds (Icterinae). Pigment Cell Res 9:96–104

    CAS  PubMed  Google Scholar 

  • Ibrahim OM, Dogru M, Ward SK et al (2011) The efficacy, sensitivity, and specificity of strip meniscometry in conjunction with tear function tests in the assessment of tear meniscus. Invest Ophthalmol Vis Sci 52:2194–2198

    PubMed  Google Scholar 

  • Ikushima M, Watanabe M et al (1986) Distribution and morphology of retinal ganglion cells in the Japanese quail. Brain Res 376(2):320–334

    CAS  PubMed  Google Scholar 

  • Inzunza O, Bravo H et al (1991) Topography and morphology of retinal ganglion-cells in Falconiforms—A study on predatory and carrion-eating birds. Anat Rec 229(2):271–277

    CAS  PubMed  Google Scholar 

  • Iskandar LA, Samuelson DA, Whitley RD (1988) The pecten and the posterior circulation in the avian eye. Investigative Invest Ophthalmol Visual Sci Suppl 29:381

    Google Scholar 

  • Jochems B, Phillips TE (2015) Histological and ultrastructural studies on the conjunctiva of the barred owl (Strix varia). PLoS One 12:e0142783. https://doi.org/10.1371/journal.pone.0142783

    Article  CAS  Google Scholar 

  • Jones A, Kirchgessner M, Mitchell MA et al (2007) Diagnostic Challenge. J Exot Pet Med 16:122–125

    Google Scholar 

  • Kafarnik C, Fritsche J, Reese S (2007) In vivo confocal microscopy in the normal corneas of cats, dogs and birds. Vet Ophthalmol 10:222–230

    PubMed  Google Scholar 

  • Karpinski LG, Clubb SL (1986) Clinical aspects of ophthalmology in caged birds. In: Kirk RW (ed) Current veterinary therapy IX. WB Saunders, Philadelphia, PA, pp 616–621

    Google Scholar 

  • Katzir G, Howland HC (2003) Corneal power and underwater accommodation in great cormorants (Phalacrocorax carbo sinensis). J Exp Biol 206:833–841

    PubMed  Google Scholar 

  • Kern TJ, Colitz CMH (2013) Exotic animal ophthalmology. In: Gelatt KN, Gilger BC, Kern TJ (eds) Veterinary ophthalmology. Wiley-Blackwell, Hoboken, pp 1765–1782

    Google Scholar 

  • Kiama SG, Mainac JN, Bhattacharjeed J et al (2006) The morphology of the pecten oculi of the ostrich. Struthio camelus Ann Anat 188:519–528

    CAS  PubMed  Google Scholar 

  • Klećkowska-Nawrot JE, Gozdziewska-Harlajczuk K, Lupicki D et al (2018) The differences in eyelids microsctructure and the conjunctiva-associated lymphoid tissue between selected ornamental and wild birds as a result of adaptation to their habitat. Acta Zool 99:367–394

    Google Scholar 

  • Klem D Jr (2009) Preventing bird–window collisions. Wilson J Ornithol 121:314–321

    Google Scholar 

  • Korbel R (1993) Tonometry in avian ophthalmology. J Assoc Avian Vet 7:44

    Google Scholar 

  • Korbel R (2011). Gonioscopy in birds. In: Proceedings 11th EAAV Conference 2011, p 218

    Google Scholar 

  • Korbel RT (2012) Common conditions and surgical techniques in the avian eye: an interactive review. In: Proceedings of the 2012 AAVAC/UEPV Conference, pp 121–124

    Google Scholar 

  • Korbel R, Braun J (1996) Further investigations on tonometry in avian ophthalmology using an electronic tonometer (Tonopen XL). Isr J Vet Med 51:176–182

    Google Scholar 

  • Korbel R, Leitenstorfer P (1996) Clinical estimation of lacrimal function in various bird species using a modified Schirmer tear test. Isr J Vet Med 51:171–175

    Google Scholar 

  • Korbel R, Stutz S (1997) Fundamentals of electroretinography in the common buzzard (Buteo buteo). Proc Eur Coll Avian Med Surg 2:211–219

    Google Scholar 

  • Korbel R, Reese S, Hegner K (1998) Anatomical and clinical examination of the iridocorneal angle (gonioscopy) and the ciliary body in various bird species. In: Proceedings of the 2nd Conference on European Association of Zoo and Wildlife Veterinarians, Chester, UK, vol 2, pp 329–342

    Google Scholar 

  • Kotska V, Kratwald-Junghams KE, Tellhelm B (1991) Radiology of the avian skull. J Vet Med 38:175–186

    Google Scholar 

  • Kuhn SE, Jones MP, Hendrix DVH, Ward DA, Baine KH (2013) Normal ocular parameters and characterization of ophthalmic lesions in a group of captive bald eagles (Haliaeetus leucocephalus). J Avian Med Surg 27:90–98. https://doi.org/10.1647/2012-032

    Article  PubMed  Google Scholar 

  • Kuszak JR, Mazurkiewicz M, Jison L et al (2006) Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization. Vet Ophthalmol 9:266–280

    CAS  PubMed  Google Scholar 

  • Labelle AL, Whittington JK, Breaux CB et al (2012) Clinical utility of a complete diagnostic protocol for the ocular evaluation of free-living raptors. Vet Ophthalmol 15:5–17

    PubMed  Google Scholar 

  • Lacerda RP, Obón E, Peña MT et al (2014) Comparative study of corneal sensitivity in birds of prey. Vet Ophthalmol 17:190–194

    PubMed  Google Scholar 

  • Land MF (2015) Eye movements of vertebrates and their relation to eye form and function. J Comp Phys A 201:195–214

    Google Scholar 

  • Lange RR, Lima L, Montiani-Ferreira F (2012) Measurement of tear production in black tufted marmosets (Callithrix penicillata) using three different methods: modified Schirmer’s I, phenol red thread and standardized endodontic absorbent paper points. Vet Ophthalmol 15:376–382

    PubMed  Google Scholar 

  • Lange RR, Lima L, Przydzimirski AC et al (2014) Reference values for the production of the aqueous fraction of the tear film measured by the standardized endodontic absorbent paper point test in different exotic and laboratory animal species. Vet Ophthalmol 17:41–45

    PubMed  Google Scholar 

  • Lehmkuhl RC, Almeida MF, Mamprim MJ et al (2010) B-mode ultrasonography biometry of the Amazon Parrot (Amazona aestiva) eye. Vet Ophthalmol 13:26–28

    PubMed  Google Scholar 

  • Levine J (1955) Consensual light response in birds. Science 122:690

    CAS  PubMed  Google Scholar 

  • Li T, Howland HC (1999) A true neuronal consensual pupillary reflex in chicks. Vis Res 39:897–900

    CAS  PubMed  Google Scholar 

  • Liepert A, Dorobek K, Hufen H et al (2011) Application of 3D ultrasonography in clinical avian ophthalmology. In: Proceedings of the 11th EAAV Conference 2011, pp 212–213

    Google Scholar 

  • Lima CGMG, Veloso JCB, Tavares AD, Jungman P, Vasconcelos AA (2005) Método citológico e histopatológico no diagnóstico das lesões da conjuntiva: estudo comparativo. Arq Bras Oftalmol 68:623–626

    PubMed  Google Scholar 

  • Lima FC, Vieira LG, Santos ALQ et al (2009) Anatomy of the scleral ossicles in Brazilian birds. Braz J Morphol Sci 26:165–169

    Google Scholar 

  • Lima L, Lange RR, Tumer-Giannico A et al (2015) Evaluation of standardized endodontic paper point tear test in New Zealand white rabbits and comparison between corneal sensitivity followed tear tests. Vet Ophthalmol 18:S118–S124

    Google Scholar 

  • Lind O, Chavez J, Kelber A (2014) The contribution of single and double cones to spectral sensitivity in budgerigars during changing light conditions. J Comp Physiol A 200:197–207

    Google Scholar 

  • Lisney TJ, Iwaniuk AN, Bandet MV et al (2012) Eye shape and retinal topography in owls (Aves: Strigiformes). Brain Behav Evol 79:218–236

    PubMed  Google Scholar 

  • Liu X-N, Zhu X-P, Wu J et al (2016) Acellular ostrich corneal stroma used as scaffold for construction of tissue-engineered cornea. Int J Ophthalmol 9:325–331

    PubMed  PubMed Central  Google Scholar 

  • Loerzel SM, Smith PJ, Howe A, Samuelson DA (2002) Vecuronium bromide, phenylephrine and atropine combinations as mydriatics in juvenile double-crested cormorants (Phalacrocorax auritus). Vet Ophthalmol 5:149–154

    CAS  PubMed  Google Scholar 

  • Machado M, Schmidt EMS, Montiani-Ferreira F (2006) Interspecies variation in orbital bone structure of psittaciform birds (with emphasis on Psittacidae). Vet Ophthalmol 9:191–194

    PubMed  Google Scholar 

  • Maggs DJ (2018) The ophthamlic examination and diagnostic testing. In: Maggs DJ, Miller PE, Ofri R (eds) Slatter’s fundamentals of veterinary ophthalmology, 6th edn. Elsevier, St. Louis, pp 36–38

    Google Scholar 

  • Maldonado PE, Maturana H, Varela FJ (1988) Frontal and lateral visual system in birds: frontal and lateral gaze. Brain Behav Evol 32:57–62

    CAS  PubMed  Google Scholar 

  • Martin GR (2014) The subtlety of simple eyes: the tuning of visual fields to perceptual challenges in birds. Philos Trans R Soc B 369:SI1–S12

    Google Scholar 

  • McLelland J (1990) A colour atlas of avian anatomy. Wolfe Medical Publications Ltd, London

    Google Scholar 

  • Meekins JM, Stuckey JA, Carpenter JW et al (2015) Ophthalmic diagnostic tests and ocular findings in a flock of captive American flamingos (Phoenicopterus ruber ruber). J Avian Med Surg 29:95–105

    PubMed  Google Scholar 

  • Meyer DBC (1977) The avian eye and its adaptations. In: Crescitelli F (ed) Hand-book of sensory physiology. Springer-Verlag, Berlin, pp 559–561

    Google Scholar 

  • Micali A, Pisani A, Ventrici C et al (2012) Morphological and morphometric study of the Pecten oculi in the budgerigar (Melopsittacus undulatus). Anat Rec 295:540–550

    Google Scholar 

  • Miyasaka K, Kazama Y, Iwashita H, Wakaiki S, Saito A (2019) A novel strip meniscometry method for measuring aqueous tear volume in dogs: clinical correlations with the Schirmer tear and phenol red thread tests. Vet Ophthalmol 22:864–871

    PubMed  Google Scholar 

  • Monção-Silva RM, Ofri R, Raposo AC et al (2016a) Ophthalmic diagnostic tests in parrots (Amazona amazonica) and (Amazona aestiva). J Exot Pet Med 25:186–193

    Google Scholar 

  • Monção-Silva RM, Ofri R, Raposo ACS et al (2016b) Ophthalmic parameters of blue-and-yellow Macaws (Ara ararauna) and lear’s Macaws (Anodorhynchus leari). Avian Biol Res 9:240–249

    Google Scholar 

  • Montiani-Ferreira F, Salomão A, Machado M, Schmidt SEM, Souza ALG (2008). Presence of os opticus in the Azure Jay (Cyanocorax caeruleus) eye. In: Abstracts: 39th annual meeting of the American College of Veterinary Ophthalmologists, Boston, MA, October 15–18, 2008, vol 11, no 6. Veterinary Ophthalmology. pp 413–429

    Google Scholar 

  • Moore BA, Baumhardt P, Doppler M, Randolet J, Blackwell BF, DeVault TL, Loew ER, Fernández-Juricic E (2012) Oblique color vision in an open-habitat bird: spectral sensitivity, photoreceptor distribution, and behavioral implications. J Exp Biol 215:3442–3452

    PubMed  Google Scholar 

  • Moore BA, Collin SP, Warrant EJ, Loew ER, Johnsen S, Hall MI et al (2012a) A novel method to measure retinal specialization traits from topographic maps for comparative analysis. J Vis 12:1–24. https://doi.org/10.1167/12.12.13

    Article  Google Scholar 

  • Moore BA, Baumhardt P, Doppler M et al (2012b) Oblique color vision in an open-habitat bird: spectral sensitivity, photoreceptor distribution and behavioral implications. J Exp Biol 215:3442–3452

    PubMed  Google Scholar 

  • Moore BA, Doppler M, Young JE, Fernández-Juricic E (2013) Interspecific differences in the visual system and scanning behavior of three forest passerines that form heterospecific flocks. J Comp Physiol A 199:263–277. https://doi.org/10.1007/s00359-012-0790-6

  • Moore BA, Pita D, Tyrrell LP, Fernández-Juricic E (2015) Vision in avian emberizid foragers: maximizing both binocular vision and fronto-lateral visual acuity. J Exp Biol 218:1347–1358. https://doi.org/10.1242/jeb.108613

  • Moore BA, Paul-Murphy JR, Tennyson AJD et al (2017a) Blind free-living kiwi offer a unique window into the ecology and evolution of vertebrate vision. BMC Biol 15:85

    PubMed  PubMed Central  Google Scholar 

  • Moore BA, Tyrrell LP, Kamilar JM et al (2017b) Structure and function of regional specializations in the vertebrate retina. In: Kaas J (ed) Evolution of nervous systems. Elsevier, Oxford, pp 351–372

    Google Scholar 

  • Moore BA, Teixeira LBC, Sponsel WE, Dubielzig RR (2017c) The consequences of avian ocular trauma: histopathological evidence and implications of acute and chronic disease. Vet Ophthalmol 20:496–504. https://doi.org/10.1111/vop.12453

    Article  PubMed  Google Scholar 

  • Moore BA, Tyrrell LP, Pita D, Bininda-Emonds ORP, Fernandez-Juricic E (2017d) Does retinal configuration make the head and eyes of foveate birds move? Nat Sci Rep 7:38406. https://doi.org/10.1038/srep38406

    Article  CAS  Google Scholar 

  • Moore BA, Maggs DJ, Kim S et al (2019) Clinical findings and normative ocular data for free-living Anna’s (Calype anna) and Black-chinned (Archilochus alexandri) hummingbirds. Vet Ophthalmol 22:13–23

    PubMed  Google Scholar 

  • Moroney MK, Pettigrew JD (1987) Some observations on the visual optics of kingfishers (Aves, Coraciformes, Alcedinidae). J Comp Physiol A 160:137–149

    Google Scholar 

  • Murphy CJ, Dubielzig RR (1993) The gross and microscopic structure of the golden eagle (Aquila chrysaetos) eye. Prog Vet Comp Ophthalmol 3:74

    Google Scholar 

  • Murphy CJ, Howland HC (1983) Owl eyes: accommodation, corneal curvature, and refractive state. J Comp Physiol A 151:277–284

    Google Scholar 

  • Mustafa OD, Ozaydjn TA (2013) A comparative morphometrical study of the pecten oculi in different avian species. Sci World J 13:1–5

    Google Scholar 

  • Oriá AP, Pinna MH, Almeida DS et al (2013) Conjunctival flora, Schirmer’s tear test, intraocular pressure, and conjunctival cytology in neotropical primates from Salvador. Brazil J Med Primatol 42:287–292

    PubMed  Google Scholar 

  • Oriá AP, Oliveira AV, Pinna MH et al (2015) Ophthalmic diagnostic tests, orbital anatomy, and adnexal histology of the broad-snouted caiman (Caiman latirostris). Vet Ophthalmol 18:30–39

    PubMed  Google Scholar 

  • Oriá AP, ACS R, de Brito VJSC et al (2019) Tear meniscometry test in wild animals. Cienc Rural 49(11):e20181002

    Google Scholar 

  • Pettigrew JD (1978) Comparison of the retinotopic organization of the visual wulst in nocturnal and diurnal raptors, with a note on the evolution of frontal vision. In: Cool SJ, Smith EL III (eds) Frontiers in visual science. Springer, New York, pp 328–335

    Google Scholar 

  • Pipo RA, Broadstone RV, Murphy CJ (1996) Lethal oculocardiac reflex in a cockatiel. Vet Comp Ophthalmol 6:27–29

    Google Scholar 

  • Porter WMR, Witmer LM (2016) Avian cephalic vascular anatomy, sites of thermal exchange, and the rete ophthalmicum. Anat Rec 299:1461–1486

    Google Scholar 

  • Pumphrey RJ (1948a) The sense organs of birds. Ibis 90:171–199

    Google Scholar 

  • Pumphrey RJ (1948b) The theory of the fovea. J Exp Biol 25:299–312

    Google Scholar 

  • Pyle P (1997) Identification guide to North American birds. Slate Creek, Bolinas, CA

    Google Scholar 

  • Rahman ML, Kuroda K et al (2010) Regional specialization of the Ganglion cell density in the retina of the Ostrich (Struthio camelus). Anim Sci J 81:108–115

    PubMed  Google Scholar 

  • Rajaei SM, Ansari Mood M, Asadi F et al (2017) Strip meniscometry in dogs, cats, and rabbits. Vet Ophthalmol 21:210–213

    PubMed  Google Scholar 

  • Randall CJ, McLachlan I (1979) Retinopathy in commercial layers. Vet Rec 105:41–42

    CAS  PubMed  Google Scholar 

  • Raposo AC, Portela RD, Masmali A et al (2018) Evaluation of lacrimal production, osmolarity, crystallization, proteomic profile, and biochemistry of capuchin monkeys’ tear film. J Med Primatol 47:371–378

    CAS  PubMed  Google Scholar 

  • Ringvold A, Anderssen E, Kjonniksen I (2000) UV absorption by uric acid in diurnal bird aqueous humor. Invest Ophthalmol Vis Sci 41:2067–2069

    CAS  PubMed  Google Scholar 

  • Rosenfield RN, Bielefeldt J (1997) Reanalysis of relationships among eye color, age and sex in the Cooper’s hawk. J Raptor Res 31:313–316

    Google Scholar 

  • Roze M (1990) Comparative electroretinography in several species of raptors. Trans Am Coll Vet Ophthalmol 21:45–48

    Google Scholar 

  • Rusanen E, Florin M, Hässig M et al (2010) Evaluation of a rebound tonometer (Tonovet®) in clinically normal cat eyes. Vet Ophthalmol 13:31–36

    PubMed  Google Scholar 

  • Scharf WC, Hamerstrom F (1975) A morphological com-parison of two harrier populations. Raptor Res 9:27–32

    Google Scholar 

  • Schroedl F, De Stefano ME, Reese S, Brehmer A, Neuhuber WL (2004) Comparative anatomy of nitrergic intrinsic choroidal neurons (ICN) in various avian species. Exp Eye Res 78:187–196

    CAS  PubMed  Google Scholar 

  • Shen M, Wang J, Tao A et al (2008) Diurnal variation of upper and lower tear menisci. Am J Ophthalmol 145:801–806

    PubMed  Google Scholar 

  • Shields M (2002) Brown pelican. In: Poole A, Gill F (eds) The birds of North America. Academy of Natural Sciences and American Ornithologists’ Union, Philadelphia, PA and Washington, DC, p 609

    Google Scholar 

  • Sillman AJ (1973) Avian vision. In: Farmer DA, King JK, Parkes KC (eds) Avian biology. Academic Press, New York, pp 349–387

    Google Scholar 

  • Smith BJ, Smith SA, Spaulding KA et al (1990) The normal xeroradiographic and radiographic anatomy of the cockatiel (Nymphzcus Hollandzs). Vet Radiol 31:226–234

    Google Scholar 

  • Squarzoni R, Perlmann E, Antunes A, Milanelo L, Barros PSM (2010) Ultrasonographic aspects and biometry of Striped owl’s eyes (Rhinoptynx clamator). Vet Ophthalmol 13(Suppl 1):86–90

    PubMed  Google Scholar 

  • Steenstrup S, Munk O (1980) Optical function of the convexiclivate fovea with particular regard to notosudid deep-sea teleosts. Opt Acta 27:949–964

    Google Scholar 

  • Stuhr CM, Murphy CJ, Schoster J et al (1999) Surgical repair of third eyelid lacerations in three birds. J Avian Med Surg 13:201–206

    Google Scholar 

  • Sweijd N, Craig AJFK (1991) Histological basis of age-related changes in iris color in the African pied starling (Spreo bicolor). Auk 108:53–59

    Google Scholar 

  • Swinger RL, Langan JN, Hamor R (2009) Ocular bacterial flora, tear production and intraocular pressure in a captive flock of Humboldt penguin (Spheniscus humboldti). J Zoo Wildl Med 40:430–436

    PubMed  Google Scholar 

  • Tiemeier OW (1950) The os opticus of birds. J Morphol 86(1):25–46

    CAS  PubMed  Google Scholar 

  • Trauger DL (1974) Eye color of female lesser scaup in relation to age. Auk 91:243–254

    Google Scholar 

  • Trost K, Shalicky M, Neil B (2007) Schirmer tear test, phenol red thread tear test, eye blink frequency and corneal sensitivity in the guinea pig. Vet Ophthalmol 10:143–146

    PubMed  Google Scholar 

  • Tsukahara N, Tani Y, Lee E et al (2010) Microstructure characteristics of the cornea in birds and mammals. J Vet Med Sci 72:1137–1143

    PubMed  Google Scholar 

  • Tully Jr. TN, Harrison GJ. Pneumonology. In Avian medicine: principles and application (eds Ritchie BW, Harrison GJ, Harrison LR). Wingers Punblishing Inc, Lake Worth, FL. 1994, pp. 556–581.

    Google Scholar 

  • Tyrrell LP, Fernández-Juricic E (2017a) The hawk-eyed songbird: retinal morphology, eye shape, and visual fields of an aerial insectivore. Am Nat 189:709–717

    PubMed  Google Scholar 

  • Tyrrell LP, Fernández-Juricic E (2017b) Avian binocular vision: it’s not just about what birds can see, it’s also about what they can’t. PLoS One 12:e0173235. https://doi.org/10.1371/journal.pone.0173235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyrrell LP, Moore BA, Loftis C, Fernández-Juricic E (2013) Looking above the prairie: localized and upward acute vision in a native grassland bird Sci Rep 3:3231. https://doi.org/10.1038/srep03231

  • Tyrrell LP, Goller B, Moore BA et al (2018) The orientation of visual space from the perspective of hummingbirds. Front Neurosci 12:16

    PubMed  PubMed Central  Google Scholar 

  • Tyrrell LP, Teixeira LBC, Dubielzig RR, Pita D, Baumhardt P, Moore BA, Fernandez-Juricic E (2019) A novel cellular structure in the retina of insectivorous birds. Sci Rep 9:15230

    PubMed  PubMed Central  Google Scholar 

  • Ullmann JFP, Moore BA, Temple SE, Fernández-Juricic E, Collin SP (2012) The retinal wholemount technique: a window to understanding the brain and behaviour. Brain Behav Evol 79:26–44. https://doi.org/10.1159/000332802

    Article  PubMed  Google Scholar 

  • Vatev IT (1987) Notes on the breeding biology of the long-legged buzzard (Buteo rufinus) in Bulgaria. J Raptor Res 21:8–13

    Google Scholar 

  • Veladiano IA, Banzato T, Bellini L et al (2016) Computed tomographic anatomy of the heads of blue-and-gold macaws (Ara ararauna), African grey parrots (Psittacus erithacus), and monk parakeets (Myiopsitta monachus). Am J Vet Res 77:1346–1356

    PubMed  Google Scholar 

  • Wallman J, Pettigrew JD (1985) Conjugate and disjunctive saccades in two avian species with contrasting oculomotor strategies. J Neurosci 5:1418–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield Hills, MI

    Google Scholar 

  • Westerhof I (1998) Pituitary-adrenocortical function and glucocorticoid administration in pigeons. JAMS 12(3):167–177

    Google Scholar 

  • Willekens B, Vrensen G (1985) Lens fiber organization in four avian species: a scanning electron microscopic study. Tissue Cell 17:359–377

    CAS  PubMed  Google Scholar 

  • Williams DL (2012) The avian eye. In: Williams DL (ed) Ophthalmology of exotic pets. Wiley-Blackwell, Chichester, pp 119–158

    Google Scholar 

  • Withgott J (2000) Taking a bird’s-eye view…in the UV: recent studies reveal a surprising new picture of how birds see the world. Bioscience 50(10):854–859

    Google Scholar 

  • Wolf ED, Amass K, Olsen J (1983) Survery of the conjunctival flora in the eye of clinically normal, captive exotic birds. J Am Vet Med Assoc 183:1232–1233

    CAS  PubMed  Google Scholar 

  • Won MH, Kang TC, Cho SS (2000 Jul 15) Glial cells in the bird retina: immunochemical detection. Microsc Res Tech 50(2):151–160

    CAS  PubMed  Google Scholar 

  • Wood CA (1917) The fundus oculi of birds, especially as viewed by the ophthalmoscope: a study in comparative anatomy and physiology. Lakeside Press, Chicago, IL, pp 38–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bret A. Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moore, B.A., Fernandez-Juricic, E., Hawkins, M.G., Montiani-Ferreira, F., Lange, R.R. (2022). Introduction to Ophthalmology of Aves. In: Montiani-Ferreira, F., Moore, B.A., Ben-Shlomo, G. (eds) Wild and Exotic Animal Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-71302-7_16

Download citation

Publish with us

Policies and ethics