Ahmad, M.A., Eckert, C., Teredesai, A.: Interpretable machine learning in healthcare. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 559–560 (2018)
Google Scholar
Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T.: Power to the people: the role of humans in interactive machine learning. AI Mag. 35(4), 105–120 (2014)
Google Scholar
Andalibi, N., Haimson, O.L., De Choudhury, M., Forte, A.: Understanding social media disclosures of sexual abuse through the lenses of support seeking and anonymity. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 3906–3918 (2016)
Google Scholar
Anderson, J.G., Hundt, E., Dean, M., Rose, K.M.: “A fine line that we walk every day”: self-care approaches used by family caregivers of persons with dementia. Issues Mental Health Nurs. 40(3), 252–259 (2019)
CrossRef
Google Scholar
Association, A.: 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 15(3), 321–387 (2019)
CrossRef
Google Scholar
Bateman, D.R., Brady, E., Wilkerson, D., Yi, E.H., Karanam, Y., Callahan, C.M.: Comparing crowdsourcing and friendsourcing: a social media-based feasibility study to support Alzheimer disease caregivers. JMIR Res. Protoc. 6(4), e56 (2017)
CrossRef
Google Scholar
Bonner, G.J., Wang, E., Wilkie, D.J., Ferrans, C.E., Dancy, B., Watkins, Y.: Advance care treatment plan (ACT-plan) for African American family caregivers: a pilot study. Dementia 13(1), 79–95 (2014)
CrossRef
Google Scholar
Bowler, L., Monahan, J., Jeng, W., Oh, J.S., He, D.: The quality and helpfulness of answers to eating disorder questions in Yahoo! answers: teens speak out. Proc. Assoc. Inf. Sci. Technol. 52(1), 1–10 (2015)
CrossRef
Google Scholar
Brank, J., Grobelnik, M., Milic-Frayling, N., Mladenic, D.: Feature selection using support vector machines. WIT Trans. Inf. Commun. Technol. 28 (2002)
Google Scholar
Chau, D.H., Kittur, A., Hong, J.I., Faloutsos, C.: Apolo: making sense of large network data by combining rich user interaction and machine learning. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 167–176 (2011)
Google Scholar
Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)
Google Scholar
Chen, Y., Cao, H., Mei, Q., Zheng, K., Xu, H.: Applying active learning to supervised word sense disambiguation in medline. J. Am. Med. Inf. Assoc. 20(5), 1001–1006 (2013)
CrossRef
Google Scholar
Collopy, B.J.: The moral underpinning of the proxy-provider relationship: issues of trust and distrust. J. Law Med. Ethics 27(1), 37–45 (1999)
CrossRef
Google Scholar
Ditto, P.H., et al.: Advance directives as acts of communication: a randomized controlled trial. Arch. Internal Med. 161(3), 421–430 (2001)
CrossRef
Google Scholar
Dosono, B.: Identity work of Asian Americans and Pacific Islanders on reddit: traversals of deliberation, moderation, and decolonization (2019)
Google Scholar
Einterz, S.F., Gilliam, R., Lin, F.C., McBride, J.M., Hanson, L.C.: Development and testing of a decision aid on goals of care for advanced dementia. J. Am. Med. Direct. Assoc. 15(4), 251–255 (2014)
CrossRef
Google Scholar
Erdelez, S., Tanacković, S.F., Balog, K.P.: Online behavior of the Alzheimer’s disease patient caregivers on croatian online discussion forum. Proc. Assoc. Inf. Sci. Technol. 56(1), 78–88 (2019)
CrossRef
Google Scholar
Esuli, A., Moreo, A., Sebastiani, F.: Building automated survey coders via interactive machine learning. arXiv preprint arXiv:1903.12110 (2019)
Eyheramendy, S., Lewis, D.D., Madigan, D.: On the Naive Bayes model for text categorization (2003)
Google Scholar
Fox, S., et al.: The social life of health information. Pew Internet & American Life Project Washington, DC (2011)
Google Scholar
Gessert, C.E., Forbes, S., Bern-Klug, M.: Planning end-of-life care for patients with dementia: roles of families and health professionals. OMEGA J. Death Dying 42(4), 273–291 (2001)
CrossRef
Google Scholar
Hanson, L.C., et al.: Improving decision-making for feeding options in advanced dementia: a randomized, controlled trial. J. Am. Geriatr. Soc. 59(11), 2009–2016 (2011)
CrossRef
Google Scholar
Hawn, C.: Take two aspirin and tweet me in the morning: how Twitter, Facebook, and other social media are reshaping health care. Health Aff. 28(2), 361–368 (2009)
CrossRef
Google Scholar
Hopwood, J., et al.: Internet-based interventions aimed at supporting family caregivers of people with dementia: systematic review. J. Med. Internet Res. 20(6), e216 (2018)
CrossRef
Google Scholar
Isaac, M., Streitfeld, D.: It’s silicon valley 2, ellen pao 0: Fighter of sexism is out at reddit. New York Times (2015)
Google Scholar
Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2372–2379. IEEE (2009)
Google Scholar
Jox, R.J., Denke, E., Hamann, J., Mendel, R., Förstl, H., Borasio, G.D.: Surrogate decision making for patients with end-stage dementia. Int. J. Geriat. Psychiatry 27(10), 1045–1052 (2012)
CrossRef
Google Scholar
Kabra, M., Robie, A.A., Rivera-Alba, M., Branson, S., Branson, K.: JAABA: interactive machine learning for automatic annotation of animal behavior. Nat. Methods 10(1), 64 (2013)
CrossRef
Google Scholar
Kose, I., Gokturk, M., Kilic, K.: An interactive machine-learning-based electronic fraud and abuse detection system in healthcare insurance. Appl. Soft Comput. 36, 283–299 (2015)
CrossRef
Google Scholar
Kulesza, T., Burnett, M., Wong, W.K., Stumpf, S.: Principles of explanatory debugging to personalize interactive machine learning. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, pp. 126–137 (2015)
Google Scholar
Lunga, D., Yang, H.L., Reith, A., Weaver, J., Yuan, J., Bhaduri, B.: Domain-adapted convolutional networks for satellite image classification: a large-scale interactive learning workflow. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(3), 962–977 (2018)
CrossRef
Google Scholar
Magnini, B., Minard, A.L., Qwaider, M.R., Speranza, M.: TextPro-AL: an active learning platform for flexible and efficient production of training data for nlp tasks. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations, pp. 131–135 (2016)
Google Scholar
Nie, L., Xie, B., Yang, Y., Shan, Y.M.: Characteristics of Chinese m-health applications for diabetes self-management. Telemed. e-Health 22(7), 614–619 (2016)
CrossRef
Google Scholar
Pagán-Ortiz, M.E., Cortés, D.E., Rudloff, N., Weitzman, P., Levkoff, S.: Use of an online community to provide support to caregivers of people with dementia. WJ. Gerontol. Soc. Work 57(6–7), 694–709 (2014)
CrossRef
Google Scholar
Patel, R., Chang, T., Greysen, S.R., Chopra, V.: Social media use in chronic disease: a systematic review and novel taxonomy. Am. J. Med. 128(12), 1335–1350 (2015)
CrossRef
Google Scholar
Reichert, J.R., Kristensen, K.L., Mukkamala, R.R., Vatrapu, R.: A supervised machine learning study of online discussion forums about type-2 diabetes. In: 2017 IEEE 19Th International Conference on E-health Networking, Applications and Services (Healthcom), pp. 1–7. IEEE (2017)
Google Scholar
Settles, B.: Active learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Sciences (2009)
Google Scholar
Stirling, C., et al.: Decision aids for respite service choices by carers of people with dementia: development and pilot RCT. BMC Med. Inf. Decis. Making 12(1), 21 (2012)
CrossRef
Google Scholar
Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)
CrossRef
Google Scholar
Swigart, V., Lidz, C., Butteworth, V., Arnold, R.: Letting go: family willingness to forgo life support. Heart Lung 25(6), 483–494 (1996)
CrossRef
Google Scholar
Tang, B., Kay, S., He, H.: Toward optimal feature selection in Naive Bayes for text categorization. IEEE Trans. knowl. Data Eng. 28(9), 2508–2521 (2016)
CrossRef
Google Scholar
Teso, S., Kersting, K.: Explanatory interactive machine learning. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 239–245 (2019)
Google Scholar
Thackeray, R., Crookston, B.T., West, J.H.: Correlates of health-related social media use among adults. J. Med. Internet Res. 15(1), e21 (2013)
CrossRef
Google Scholar
Tran, V.C., Nguyen, N.T., Fujita, H., Hoang, D.T., Hwang, D.: A combination of active learning and self-learning for named entity recognition on twitter using conditional random fields. Knowl. Based Syst. 132, 179–187 (2017)
CrossRef
Google Scholar
Trivedi, G., Pham, P., Chapman, W.W., Hwa, R., Wiebe, J., Hochheiser, H.: Nlpreviz: an interactive tool for natural language processing on clinical text. J. Am. Med. Inf. Assoc. 25(1), 81–87 (2018)
CrossRef
Google Scholar
Tuia, D., Ratle, F., Pacifici, F., Kanevski, M.F., Emery, W.J.: Active learning methods for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 47(7), 2218–2232 (2009)
CrossRef
Google Scholar
Ullah, M.R., Bhuiyan, M.A.R., Das, A.K.: Ihemha: interactive healthcare system design with emotion computing and medical history analysis. In: 2017 6th International Conference on Informatics, Electronics and Vision & 2017 7th International Symposium in Computational Medical and Health Technology (ICIEV-ISCMHT), pp. 1–8. IEEE (2017)
Google Scholar
Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2591–2600 (2016)
CrossRef
Google Scholar
Wang, Y.C., Kraut, R.E., Levine, J.M.: Eliciting and receiving online support: using computer-aided content analysis to examine the dynamics of online social support. J. Med. Internet Res. 17(4), e99 (2015)
CrossRef
Google Scholar
Wang, Y., Zheng, K., Xu, H., Mei, Q.: Clinical word sense disambiguation with interactive search and classification. In: AMIA Annual Symposium Proceedings, vol. 2016, p. 2062. American Medical Informatics Association (2016)
Google Scholar
Ware, M., Frank, E., Holmes, G., Hall, M., Witten, I.H.: Interactive machine learning: letting users build classifiers. Int. J. Hum. Comput. Stud. 55(3), 281–292 (2001)
MATH
CrossRef
Google Scholar
Wen, M., Rosé, C.P.: Understanding participant behavior trajectories in online health support groups using automatic extraction methods. In: Proceedings of the 17th ACM International Conference on Supporting Group Work, pp. 179–188 (2012)
Google Scholar
Xie, B., Su, Z., Liu, Y., Wang, M., Zhang, M.: Health information wanted and obtained from doctors/nurses: a comparison of Chinese cancer patients and family caregivers. Support. Care Cancer 23(10), 2873–2880 (2015)
CrossRef
Google Scholar
Xie, B., Su, Z., Liu, Y., Wang, M., Zhang, M.: Health information sources for different types of information used by Chinese patients with cancer and their family caregivers. Health Expect. 20(4), 665–674 (2017)
CrossRef
Google Scholar
Xie, B., Wang, M., Feldman, R.: Preferences for health information and decision-making: development of the health information wants (HIW) questionnaire. In: Proceedings of the 2011 iConference, pp. 273–280 (2011)
Google Scholar
Xie, B., Wang, M., Feldman, R., Zhou, L.: Internet use frequency and patient-centered care: measuring patient preferences for participation using the health information wants questionnaire. J. Med. Internet Res. 15(7), e132 (2013)
CrossRef
Google Scholar
Xie, B., Wang, M., Feldman, R., Zhou, L.: Exploring older and younger adults’ preferences for health information and participation in decision making using the h ealth i nformation w ants q uestionnaire (hiwq). Health Expect. 17(6), 795–808 (2014)
CrossRef
Google Scholar
Yin, Z., Sulieman, L.M., Malin, B.A.: A systematic literature review of machine learning in online personal health data. J. Am. Med. Inf. Assoc. 26(6), 561–576 (2019)
CrossRef
Google Scholar
Yoon, S., Lucero, R., Mittelman, M.S., Luchsinger, J.A., Bakken, S.: Mining twitter to inform the design of online interventions for Hispanic Alzheimer’s disease and related dementias caregivers. Hispanic Health Care Int. 18(3), 138–143 (2020)
CrossRef
Google Scholar
Zhang, S., Grave, E., Sklar, E., Elhadad, N.: Longitudinal analysis of discussion topics in an online breast cancer community using convolutional neural networks. J. Biomed. Inf. 69, 1–9 (2017)
CrossRef
Google Scholar
Zhao, Y., Zhang, J.: Consumer health information seeking in social media: a literature review. Health Inf. Libr. J. 34(4), 268–283 (2017)
CrossRef
Google Scholar