Skip to main content

Haar Wavelet Based Block Autoregressive Flows for Trajectories

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12544))

Included in the following conference series:

  • 1168 Accesses

Abstract

Prediction of trajectories such as that of pedestrians is crucial to the performance of autonomous agents. While previous works have leveraged conditional generative models like GANs and VAEs for learning the likely future trajectories, accurately modeling the dependency structure of these multimodal distributions, particularly over long time horizons remains challenging. Normalizing flow based generative models can model complex distributions admitting exact inference. These include variants with split coupling invertible transformations that are easier to parallelize compared to their autoregressive counterparts. To this end, we introduce a novel Haar wavelet based block autoregressive model leveraging split couplings, conditioned on coarse trajectories obtained from Haar wavelet based transformations at different levels of granularity. This yields an exact inference method that models trajectories at different spatio-temporal resolutions in a hierarchical manner. We illustrate the advantages of our approach for generating diverse and accurate trajectories on two real-world datasets – Stanford Drone and Intersection Drone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: CVPR (2016)

    Google Scholar 

  2. Ardizzone, L., Lüth, C., Kruse, J., Rother, C., Köthe, U.: Guided image generation with conditional invertible neural networks. arXiv preprint arXiv:1907.02392 (2019)

  3. Bhattacharyya, A., Hanselmann, M., Fritz, M., Schiele, B., Straehle, C.N.: Conditional flow variational autoencoders for structured sequence prediction. In: BDL@NeurIPS (2019)

    Google Scholar 

  4. Bhattacharyya, A., Mahajan, S., Fritz, M., Schiele, B., Roth, S.: Normalizing flows with multi-scale autoregressive priors. In: CVPR (2020)

    Google Scholar 

  5. Bhattacharyya, A., Schiele, B., Fritz, M.: Accurate and diverse sampling of sequences based on a “best of many” sample objective. In: CVPR (2018)

    Google Scholar 

  6. Bock, J., Krajewski, R., Moers, T., Vater, L., Runde, S., Eckstein, L.: The ind dataset: a drone dataset of naturalistic vehicle trajectories at german intersections. arXiv preprint arXiv:1911.07602 (2019)

  7. Chandra, R., Bhattacharya, U., Bera, A., Manocha, D.: Traphic: trajectory prediction in dense and heterogeneous traffic using weighted interactions. In: CVPR (2019)

    Google Scholar 

  8. Chen, T.Q., Behrmann, J., Duvenaud, D.K., Jacobsen, J.H.: Residual flows for invertible generative modeling. In: NeurIPS (2019)

    Google Scholar 

  9. Cremer, C., Li, X., Duvenaud, D.: Inference suboptimality in variational autoencoders. In: ICML (2018)

    Google Scholar 

  10. Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. In: CVPR Workshop (2018)

    Google Scholar 

  11. Deo, N., Trivedi, M.M.: Scene induced multi-modal trajectory forecasting via planning. In: ICRA Workshop (2019)

    Google Scholar 

  12. Dinh, L., Krueger, D., Bengio, Y.: Nice: non-linear independent components estimation. In: ICLR (2015)

    Google Scholar 

  13. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. In: ICLR (2017)

    Google Scholar 

  14. Felsen, P., Lucey, P., Ganguly, S.: Where will they go? Predicting fine-grained adversarial multi-agent motion using conditional variational autoencoders. In: ECCV (2018)

    Google Scholar 

  15. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  16. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social gan: socially acceptable trajectories with generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  17. Haar, A.: Zur theorie der orthogonalen funktionensysteme. Math. Ann. 69(3), 331–371 (1910)

    Article  MathSciNet  Google Scholar 

  18. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282 (1995)

    Google Scholar 

  19. Ho, J., Chen, X., Srinivas, A., Duan, Y., Abbeel, P.: Flow++: improving flow-based generative models with variational dequantization and architecture design. In: ICML (2019)

    Google Scholar 

  20. Huang, C.W., Dinh, L., Courville, A.: Augmented normalizing flows: bridging the gap between generative flows and latent variable models. arXiv preprint arXiv:2002.07101 (2020)

  21. Kim, S., Lee, S.G., Song, J., Kim, J., Yoon, S.: Flowavenet: a generative flow for raw audio. In: ICML (2019)

    Google Scholar 

  22. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  23. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. In: NeurIPS (2018)

    Google Scholar 

  24. Kirichenko, P., Izmailov, P., Wilson, A.G.: Why normalizing flows fail to detect out-of-distribution data. arXiv preprint arXiv:2006.08545 (2020)

  25. Kumar, M., et al.: Videoflow: a flow-based generative model for video. In: ICLR (2020)

    Google Scholar 

  26. Lee, A.X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., Levine, S.: Stochastic adversarial video prediction. arXiv preprint arXiv:1804.01523 (2018)

  27. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: CVPR (2017)

    Google Scholar 

  28. Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D.: Trafficpredict: trajectory prediction for heterogeneous traffic-agents. In: AAAI (2019)

    Google Scholar 

  29. Mangalam, K., Girase, H., Agarwal, S., Lee, K.-H., Adeli, E., Malik, J., Gaidon, A.: It Is not the journey but the destination: endpoint conditioned trajectory prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 759–776. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_45

    Chapter  Google Scholar 

  30. van den Oord, A., et al.: Wavenet: a generative model for raw audio. In: ISCA Speech Synthesis Workshop (2016)

    Google Scholar 

  31. van den Oord, A., Kalchbrenner, N., Espeholt, L., Kavukcuoglu, K., Vinyals, O., Graves, A.: Conditional image generation with PixelCNN decoders. In: NIPS (2016)

    Google Scholar 

  32. Pajouheshgar, E., Lampert, C.H.: Back to square one: probabilistic trajectory forecasting without bells and whistles. In: NeurIPs Workshop (2018)

    Google Scholar 

  33. Porwik, P., Lisowska, A.: The haar-wavelet transform in digital image processing: its status and achievements. Machine graphics and vision 13(1/2), 79–98 (2004)

    MATH  Google Scholar 

  34. Rhinehart, N., Kitani, K.M., Vernaza, P.: R2p2: a reparameterized pushforward policy for diverse, precise generative path forecasting. In: ECCV (2018)

    Google Scholar 

  35. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory understanding in crowded scenes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_33

    Chapter  Google Scholar 

  36. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, S.H., Savarese, S.: Sophie: an attentive gan for predicting paths compliant to social and physical constraints. In: CVPR (2019)

    Google Scholar 

  37. Sadeghian, A., Legros, F., Voisin, M., Vesel, R., Alahi, A., Savarese, S.: Car-net: clairvoyant attentive recurrent network. In: ECCV (2018)

    Google Scholar 

  38. Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: CVPR (2011)

    Google Scholar 

  39. Yuan, Y., Kitani, K.: Diverse trajectory forecasting with determinantal point processes. In: ICLR (2020)

    Google Scholar 

  40. Zhao, T., et al.: Multi-agent tensor fusion for contextual trajectory prediction. In: CVPR (2019)

    Google Scholar 

  41. Ziegler, Z.M., Rush, A.M.: Latent normalizing flows for discrete sequences. In: ICML (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apratim Bhattacharyya .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2665 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharyya, A., Straehle, CN., Fritz, M., Schiele, B. (2021). Haar Wavelet Based Block Autoregressive Flows for Trajectories. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recognition. DAGM GCPR 2020. Lecture Notes in Computer Science(), vol 12544. Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71278-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71277-8

  • Online ISBN: 978-3-030-71278-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics