Abstract
Context - i.e. information not contained in a particular measurement but in its spatial proximity - plays a vital role in the analysis of images in general and in the semantic segmentation of Polarimetric Synthetic Aperture Radar (PolSAR) images in particular. Nevertheless, a detailed study on whether context should be incorporated implicitly (e.g. by spatial features) or explicitly (by exploiting classifiers tailored towards image analysis) and to which degree contextual information has a positive influence on the final classification result is missing in the literature. In this paper we close this gap by using projection-based Random Forests that allow to use various degrees of local context without changing the overall properties of the classifier (i.e. its capacity). Results on two PolSAR data sets - one airborne over a rural area, one space-borne over a dense urban area - show that local context indeed has substantial influence on the achieved accuracy by reducing label noise and resolving ambiguities. However, increasing access to local context beyond a certain amount has a negative effect on the obtained semantic maps.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aghababaee, H., Sahebi, M.R.: Game theoretic classification of polarimetric SAR images. Eur. J. Remote Sens. 48(1), 33–48 (2015)
Aksoy, S., Koperski, K., Tusk, C., Marchisio, G., Tilton, J.C.: Learning Bayesian classifiers for scene classification with a visual grammar. IEEE Trans. Geosci. Remote Sens. 43(3), 581–589 (2005)
Anfinsen, S.N., Eltoft, T.: Application of the matrix-variate Mellin transform to analysis of polarimetric radar images. IEEE Trans. Geosci. Remote Sens. 49(6), 2281–2295 (2011)
Bouchemakh, L., Smara, Y., Boutarfa, S., Hamadache, Z.: A comparative study of speckle filtering in polarimetric radar SAR images. In: 2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications, pp. 1–6 (2008)
Bovolo, F., Bruzzone, L.: A context-sensitive technique based on support vector machines for image classification. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) Pattern Recogn. Mach. Intell., pp. 260–265. Springer, Heidelberg (2005). https://doi.org/10.1007/11590316_36
Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)
Deng, X., López-MartÃnez, C., Chen, J., Han, P.: Statistical modeling of polarimetric SAR data: a survey and challenges. Remote Sens. 9(4) (2017). https://doi.org/10.3390/rs9040348
Farhadiani, R., Homayouni, S., Safari, A.: Impact of polarimetric SAR speckle reduction on classification of agriculture lands. ISPRS - Int. Arch. Photogrammetry Remote Sens. Spatial Inf. Sci. XLII-4/W18, 379–385 (2019). https://doi.org/10.5194/isprs-archives-XLII-4-W18-379-2019
Fauvel, M., Chanussot, J., Benediktsson, J.A., Sveinsson, J.R.: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. In: 2007 IEEE International Geoscience and Remote Sensing Symposium, pp. 4834–4837 (2007)
Fischer, G., Papathanassiou, K.P., Hajnsek, I.: Modeling and compensation of the penetration bias in InSAR DEMs of Ice sheets at different frequencies. IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. 13, 2698–2707 (2020)
Fjortoft, R., Delignon, Y., Pieczynski, W., Sigelle, M., Tupin, F.: Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields. IEEE Trans. Geosci. Remote Sens. 41(3), 675–686 (2003)
Hänsch, R., Hellwich, O.: Skipping the real world: classification of PolSAR images without explicit feature extraction. ISPRS J. Photogrammetry Remote Sens. 140, 122–132 (2017). https://doi.org/10.1016/j.isprsjprs.2017.11.022
Hänsch, R., Hellwich, O.: A comparative evaluation of polarimetric distance measures within the random forest framework for the classification of PolSAR images. In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 8440–8443. IEEE, July 2018. https://doi.org/10.1109/IGARSS.2018.8518834
Hänsch, R., Wiesner, P., Wendler, S., Hellwich, O.: Colorful trees: visualizing random forests for analysis and interpretation. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 294–302. IEEE, January 2019. https://doi.org/10.1109/WACV.2019.00037
Hoeser, T., Kuenzer, C.: Object detection and image segmentation with deep learning on earth observation data: a review-part I: evolution and recent trends. Remote Sens. 12, 1667 (2020)
Jong-Sen Lee, Grunes, M.R., Pottier, E., Ferro-Famil, L.: Unsupervised terrain classification preserving polarimetric scattering characteristics. IEEE Trans. Geosci. Remote Sens. 42(4), 722–731 (2004)
Ley, A., D’Hondt, O., Valade, S., Hänsch, R., Hellwich, O.: Exploiting GAN-based SAR to optical image transcoding for improved classification via deep learning. In: EUSAR 2018; 12th European Conference on Synthetic Aperture Radar, pp. 396–401. VDE, June 2018
Liu, X., Jiao, L., Tang, X., Sun, Q., Zhang, D.: Polarimetric convolutional network for polSAR image classification. IEEE Trans. Geosci. Remote Sens. 57(5), 3040–3054 (2019)
Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Gill, E., Molinier, M.: A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem. ISPRS J. Photogramm. Remote. Sens. 151, 223–236 (2019)
Mullissa, A., Persello, C., Stein, A.: Polsarnet: a deep fully convolutional network for polarimetric sar image classification. IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. 12(12), 5300–5309 (2019)
Paradiso, M.A., Blau, S., Huang, X., MacEvoy, S.P., Rossi, A.F., Shalev, G.: Lightness, filling-in, and the fundamental role of context in visual perception. In: Visual Perception, Progress in Brain Research, vol. 155, pp. 109–123. Elsevier (2006)
Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 39(2), 309–320 (2001)
Tang, H.H., et al.: A multiscale latent Dirichlet allocation model for object-oriented clustering of VHR panchromatic satellite images. IEEE Trans. Geosci. Remote Sens. 51(3), 1680–1692 (2013)
Tilton, J.C., Swain, P.H.: Incorporating spatial context into statistical classification of multidimensional image data. LARS (Purdue University. Laboratory for Applications of Remote Sensing), vol. 072981 (1981)
Tison, C., Nicolas, J., Tupin, F., Maitre, H.: A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 42(10), 2046–2057 (2004)
Uhlmann, S., Kiranyaz, S.: Integrating color features in polarimetric SAR image classification. IEEE Trans. Geosci. Remote Sens. 52(4), 2197–2216 (2014)
Vogel, J., Schiele, B.: Semantic modeling of natural scenes for content-based image retrieval. Int. J. Comput. Vis. 72, 133–157 (2007). https://doi.org/10.1007/s11263-006-8614-1
Watanabe, T., Suzuki, H.: An experimental evaluation of classifiers using spatial context for multispectral images. Syst. Comput. Japan 19(4), 33–47 (1988)
Wu, Y., Ji, K., Yu, W., Su, Y.: Region-based classification of polarimetric SAR images using wishart MRF. IEEE Geosci. Remote Sens. Lett. 5(4), 668–672 (2008)
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (2015)
Zhu, X.X., et al.: Deep learning meets SAR (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hänsch, R. (2021). Looking Outside the Box: The Role of Context in Random Forest Based Semantic Segmentation of PolSAR Images. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recognition. DAGM GCPR 2020. Lecture Notes in Computer Science(), vol 12544. Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-71278-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71277-8
Online ISBN: 978-3-030-71278-5
eBook Packages: Computer ScienceComputer Science (R0)