Skip to main content

Microglia and Psychiatric Disorders

  • Chapter
  • First Online:
Immuno-Psychiatry

Abstract

Immunological, developmental and homeostatic functions are attributed to microglia in the central nervous system (CNS). Supporting this view, transcriptional profiling studies have revealed the myriad of microglial transformation states, with specific functions required at defined spatiotemporal points throughout life. This plasticity can be a double-edged sword, whereby functional outcomes of microglia can shift from neuroprotective to neurotoxic, if their homeostasis becomes dysregulated, leading to their implication in the pathology of numerous brain disorders. In this context, the depletion of microglia from the rodent brain is sufficient to induce behavioural symptoms with dimensional relevance for some psychiatric brain disorders, including schizophrenia and autism spectrum disorder. In this chapter, we therefore consider the potential role of microglia in these disorders. In doing so, we present evidence from human genetics, post-mortem tissue studies, epidemiological studies and in vivo positron emission tomography (PET) imaging. In addition, we consider how functional changes in microglia could lead to psychiatric disorders, with a particular focus on the putative role of microglia in developmental synapse formation and elimination. Finally, we address gaps in our knowledge that remain to be filled, specifically the key question of whether microglial pathology is causative for psychiatric symptoms or merely an epiphenomenon of no consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banati RB. Neuropathological imaging: in vivo detection of glial activation as a measure of disease and adaptive change in the brain. Br Med Bull. 2003;65:121–31. https://doi.org/10.1093/bmb/65.1.121.

    Article  PubMed  Google Scholar 

  2. Hoeffel G, et al. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity. 2015;42:665–78. https://doi.org/10.1016/j.immuni.2015.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schulz C, et al. A lineage of myeloid cells independent of myb and hematopoietic stem cells. Science. 2012;335:86–90. https://doi.org/10.1126/science.1219179.

    Article  CAS  Google Scholar 

  4. Kierdorf K, Prinz M. Factors regulating microglia activation. Front Cell Neurosci. 2013;7:44. https://doi.org/10.3389/fncel.2013.00044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kierdorf K, et al. Microglia emerge from erythromyeloid precursors via Pu.1-and Irf8-dependent pathways. Nat Neurosci. 2013;16:273–80. https://doi.org/10.1038/nn.3318.

    Article  CAS  PubMed  Google Scholar 

  6. Ginhoux F, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5. https://doi.org/10.1126/science.1194637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gomez Perdiguero E, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518:547–51. https://doi.org/10.1038/nature13989.

    Article  CAS  PubMed  Google Scholar 

  8. Bloom W, Bartelmez GW. Hematopoiesis in young human embryos. Am J Anat. 1940;67:21–53. https://doi.org/10.1002/aja.1000670103.

    Article  Google Scholar 

  9. Migliaccio G, et al. Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac-liver transition. J Clin Invest. 1986;78:51–60. https://doi.org/10.1172/JCI112572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wierzba-Bobrowicz T, Gwiazda E, Poszwińska Z. Morphological study of microglia in human mesencephalon during the development and aging. Folia Neuropathol. 1995;33:77–83.

    CAS  PubMed  Google Scholar 

  11. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Reports. 2014;6. https://doi.org/10.12703/P6-13.

  12. Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353:777–83.

    Article  CAS  PubMed  Google Scholar 

  13. Matcovitch-Natan O, et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 2016;353. https://doi.org/10.1126/science.aad8670.

  14. Wright-Jin EC, Gutmann DH. Microglia as dynamic cellular mediators of brain function. Trends Mol Med. 2019;25:967–79. https://doi.org/10.1016/j.molmed.2019.08.013.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mondelli V, Vernon AC, Turkheimer F, Dazzan P, Pariante CM. Brain microglia in psychiatric disorders. Lancet Psychiatry. 2017;4:563–72. https://doi.org/10.1016/S2215-0366(17)30101-3.

    Article  PubMed  Google Scholar 

  16. Squarzoni P, et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 2014;8:1271–9. https://doi.org/10.1016/j.celrep.2014.07.042.

    Article  CAS  PubMed  Google Scholar 

  17. Matias I, Morgado J, Gomes FCA. Astrocyte heterogeneity: impact to brain aging and disease. Front Aging Neurosci. 2019;11. https://doi.org/10.3389/fnagi.2019.00059.

  18. Li Q, et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron. 2019;101:207–223.e10. https://doi.org/10.1016/j.neuron.2018.12.006.

    Article  CAS  PubMed  Google Scholar 

  19. Masuda T, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566:388–92. https://doi.org/10.1038/s41586-019-0924-x.

    Article  CAS  PubMed  Google Scholar 

  20. Hammond TR, et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity. 2019;50:253–271.e6. https://doi.org/10.1016/j.immuni.2018.11.004.

    Article  CAS  PubMed  Google Scholar 

  21. Kana V, et al. CSF-1 controls cerebellar microglia and is required for motor function and social interaction. J Exp Med. 2019;216:2265–81. https://doi.org/10.1084/jem.20182037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamamoto M, Kim M, Imai H, Itakura Y, Ohtsuki G. Microglia-triggered plasticity of intrinsic excitability modulates psychomotor behaviors in acute cerebellar inflammation. Cell Reports. 2019;28:2923–2938.e8. https://doi.org/10.1016/j.celrep.2019.07.078.

    Article  CAS  PubMed  Google Scholar 

  23. Thion MS, et al. Biphasic impact of prenatal inflammation and macrophage depletion on the wiring of neocortical inhibitory circuits. Cell Reports. 2019;28:1119–1126.e4. https://doi.org/10.1016/j.celrep.2019.06.086.

    Article  CAS  PubMed  Google Scholar 

  24. Bitanihirwe BKY, Lim MP, Kelley JF, Kaneko T, Woo TUW. Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry. 2009;9. https://doi.org/10.1186/1471-244X-9-71.

  25. Lauber E, Filice F, Schwaller B. Parvalbumin neurons as a hub in autism spectrum disorders. J Neurosci Res. 2018;96:360–1. https://doi.org/10.1002/jnr.24204.

    Article  CAS  PubMed  Google Scholar 

  26. Ma C, Gu C, Huo Y, Li X, Luo XJ. The integrated landscape of causal genes and pathways in schizophrenia. Transl Psychiatry. 2018;8. https://doi.org/10.1038/s41398-018-0114-x.

  27. Skene NG, et al. Genetic identification of brain cell types underlying schizophrenia. Nat Genet. 2018;50:825–33. https://doi.org/10.1038/s41588-018-0129-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sekar A, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83. https://doi.org/10.1038/nature16549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bassett AS, Chow EWC. Schizophrenia and 22q11.2 deletion syndrome. Curr Psychiatry Rep. 2008;10:148–57. https://doi.org/10.1007/s11920-008-0026-1.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Okahisa Y, et al. Leukemia inhibitory factor gene is associated with schizophrenia and working memory function. Prog Neuro-Psychopharmacol Biol Psychiatry. 2010;34:172–6. https://doi.org/10.1016/j.pnpbp.2009.10.020.

    Article  CAS  Google Scholar 

  31. Mokhtari R, Lachman HM. The major histocompatibility complex (MHC) in schizophrenia: a review. J Clin Cell Immunol. 2016;7. https://doi.org/10.4172/2155-9899.1000479.

  32. Sellgren CM, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019;22:374–85. https://doi.org/10.1038/s41593-018-0334-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schafer DP, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705. https://doi.org/10.1016/j.neuron.2012.03.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paolicelli RC, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.

    Article  CAS  PubMed  Google Scholar 

  35. Zhan Y, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17:400–6. https://doi.org/10.1038/nn.3641.

    Article  CAS  PubMed  Google Scholar 

  36. Ishizuka K, et al. Rare genetic variants in CX3CR1 and their contribution to the increased risk of schizophrenia and autism spectrum disorders. Transl Psychiatry. 2017;7. https://doi.org/10.1038/tp.2017.173.

  37. Limatola C, Ransohoff RM. Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front Cell Neurosci. 2014;8. https://doi.org/10.3389/fncel.2014.00229.

  38. Frick LR, Williams K, Pittenger C. Microglial dysregulation in psychiatric disease. Clin Dev Immunol. 2013;2013. https://doi.org/10.1155/2013/608654.

  39. Van Kesteren CFMG, et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry. 2017;7. https://doi.org/10.1038/tp.2017.4.

  40. Trépanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP. Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry. 2016;21:1009–26.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sneeboer MAM, et al. Microglial activation in schizophrenia: is translocator 18 kDa protein (TSPO) the right marker? Schizophr Res. 2020;215:167–72. https://doi.org/10.1016/j.schres.2019.10.045.

    Article  PubMed  Google Scholar 

  42. Fillman SG, et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18:206–14.

    Article  CAS  PubMed  Google Scholar 

  43. Purves-Tyson TD, et al. Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation. Mol Psychiatry. 2021;26:849–63. https://doi.org/10.1038/s41380-019-0434-0.

    Article  PubMed  Google Scholar 

  44. Amato D, Vernon AC, Papaleo F. Dopamine, the antipsychotic molecule: a perspective on mechanisms underlying antipsychotic response variability. Neurosci Biobehav Rev. 2018;85:146–59. https://doi.org/10.1016/j.neubiorev.2017.09.027.

    Article  CAS  PubMed  Google Scholar 

  45. Cotel MC, et al. Microglial activation in the rat brain following chronic antipsychotic treatment at clinically relevant doses. Eur Neuropsychopharmacol. 2015;25:2098–107. https://doi.org/10.1016/j.euroneuro.2015.08.004.

    Article  CAS  PubMed  Google Scholar 

  46. Bloomfield PS, et al. The effects of haloperidol on microglial morphology and translocator protein levels: an in vivo study in rats using an automated cell evaluation pipeline. J Psychopharmacol. 2018;32:1264–72. https://doi.org/10.1177/0269881118788830.

    Article  CAS  PubMed  Google Scholar 

  47. Bracken MB. Why animal studies are often poor predictors of human reactions to exposure. J R Soc Med. 2009;102:120–2. https://doi.org/10.1258/jrsm.2008.08k033.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bae K-R, Shim H-J, Balu D, Kim SR, Yu S-W. Translocator protein 18 kDa negatively regulates inflammation in microglia. J Neuroimmune Pharmacol. 2014;9:424–37.

    Article  PubMed  Google Scholar 

  49. Turkheimer FE, et al. The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans. 2015;43:586–92. https://doi.org/10.1042/BST20150058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Owen DR, et al. TSPO mutations in rats and a human polymorphism impair the rate of steroid synthesis. Biochem J. 2017;474:3985–99.

    Article  CAS  PubMed  Google Scholar 

  51. Notter T, Coughlin JM, Sawa A, Meyer U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry. 2018;23:36–47. https://doi.org/10.1038/mp.2017.232.

    Article  CAS  PubMed  Google Scholar 

  52. Betlazar C, Harrison-Brown M, Middleton RJ, Banati R, Liu G-J. Cellular sources and regional variations in the expression of the neuroinflammatory marker translocator protein (TSPO) in the normal brain. Int J Mol Sci. 2018;19

    Google Scholar 

  53. Pannell M, et al. Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia. Glia. 2020;68:280–97. https://doi.org/10.1002/glia.23716.

    Article  PubMed  Google Scholar 

  54. Saijo K, Crotti A, Glass CK. Regulation of microglia activation and deactivation by nuclear receptors. Glia. 2013;61:104–11. https://doi.org/10.1002/glia.22423.

    Article  PubMed  Google Scholar 

  55. Li X, et al. Microglia activation in the offspring of prenatal poly I: C exposed rats: a PET imaging and immunohistochemistry study. General Psychiatry. 2018;31

    Google Scholar 

  56. Hannestad J, et al. Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates. NeuroImage. 2012;63:232–9. https://doi.org/10.1016/j.neuroimage.2012.06.055.

    Article  CAS  PubMed  Google Scholar 

  57. Hillmer AT, et al. Microglial depletion and activation: a [11C]PBR28 PET study in nonhuman primates. EJNMMI Res. 2017;7

    Google Scholar 

  58. Sandiego CM, et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A. 2015;112:12468–73. https://doi.org/10.1073/pnas.1511003112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marques TR, et al. Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imaging studies. Psychol Med. 2019;49:2186–96. https://doi.org/10.1017/S0033291718003057.

    Article  PubMed  Google Scholar 

  60. Plavén-Sigray P, et al. Positron emission tomography studies of the glial cell marker translocator protein in patients with psychosis: a meta-analysis using individual participant data. Biol Psychiatry. 2018;84:433–42. https://doi.org/10.1016/j.biopsych.2018.02.1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bloomfield PS, et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [11C]PBR28 PET brain imaging study. Am J Psychiatr. 2016;173:44–52. https://doi.org/10.1176/appi.ajp.2015.14101358.

    Article  PubMed  Google Scholar 

  62. Ottoy J, et al. 18F-PBR111 PET imaging in healthy controls and schizophrenia: test-retest reproducibility and quantification of neuroinflammation. J Nucl Med. 2018;59:1267–74. https://doi.org/10.2967/jnumed.117.203315.

    Article  CAS  PubMed  Google Scholar 

  63. Suzuki K, et al. Microglial activation in young adults with autism spectrum disorder. Arch Gen Psychiatry. 2013;70:49–58. https://doi.org/10.1001/jamapsychiatry.2013.272.

    Article  Google Scholar 

  64. Van Der Doef TF, et al. In vivo (R)-[11C]PK11195 PET imaging of 18kDa translocator protein in recent onset psychosis. NPJ Schizophrenia. 2016;2. https://doi.org/10.1038/npjschz.2016.31.

  65. Doorduin J, et al. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med. 2009;50:1801–7. https://doi.org/10.2967/jnumed.109.066647.

    Article  PubMed  Google Scholar 

  66. Takano A, et al. Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol. 2010;13:943–50. https://doi.org/10.1017/S1461145710000313.

    Article  CAS  PubMed  Google Scholar 

  67. Kenk M, et al. Imaging neuroinflammation in gray and white matter in schizophrenia: an in-vivo PET study with [18 F]-FEPPA. Schizophr Bull. 2015;41:85–93. https://doi.org/10.1093/schbul/sbu157.

    Article  PubMed  Google Scholar 

  68. Coughlin JM, et al. In vivo markers of inflammatory response in recent-onset schizophrenia: a combined study using [11C]DPA-713 PET and analysis of CSF and plasma. Transl Psychiatry. 2016;6:1–8. https://doi.org/10.1038/tp.2016.40.

    Article  CAS  Google Scholar 

  69. Hafizi S, et al. Imaging microglial activation in untreated first-episode psychosis: a PET study with [18F]FEPPA. Am J Psychiatr. 2017;174:118–24. https://doi.org/10.1176/appi.ajp.2016.16020171.

    Article  PubMed  Google Scholar 

  70. Holmes SE, et al. In vivo imaging of brain microglial activity in antipsychotic-free and medicated schizophrenia: a [11C](R)-PK11195 positron emission tomography study. Mol Psychiatry. 2016;21:1672–9. https://doi.org/10.1038/mp.2016.180.

    Article  CAS  PubMed  Google Scholar 

  71. Collste K, et al. Lower levels of the glial cell marker TSPO in drug-naive first-episode psychosis patients as measured using PET and [ 11 C]PBR28. Mol Psychiatry. 2017;22:850–6. https://doi.org/10.1038/mp.2016.247.

    Article  CAS  PubMed  Google Scholar 

  72. Di Biase MA, et al. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl Psychiatry. 2017;7. https://doi.org/10.1038/tp.2017.193.

  73. De Picker L, et al. State-associated changes in longitudinal [ 18 F]-PBR111 TSPO PET imaging of psychosis patients: evidence for the accelerated ageing hypothesis? Brain Behav Immun. 2019;77:46–54. https://doi.org/10.1016/j.bbi.2018.11.318.

    Article  PubMed  Google Scholar 

  74. Hafizi S, et al. Imaging microglial activation in individuals at clinical high risk for psychosis: an in vivo PET study with [18F] FEPPA. Neuropsychopharmacology. 2017;42:2474–81. https://doi.org/10.1038/npp.2017.111.

    Article  PubMed  PubMed Central  Google Scholar 

  75. van Berckel BN, et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry. 2008;64:820–2. https://doi.org/10.1016/j.biopsych.2008.04.025.

    Article  PubMed  Google Scholar 

  76. Mattei D, et al. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl Psychiatry. 2017;7. https://doi.org/10.1038/tp.2017.80.

  77. Lum JS, et al. Increased translocator protein (TSPO) binding throughout neurodevelopment in the perinatal phencyclidine rodent model of schizophrenia. Schizophr Res. 2019;212:243–5. https://doi.org/10.1016/j.schres.2019.07.041.

    Article  PubMed  Google Scholar 

  78. Owen DR, et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J Cereb Blood Flow Metab. 2017;37:2679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gosselin D, et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356:1248–59. https://doi.org/10.1126/science.aal3222.

    Article  CAS  Google Scholar 

  80. Haenseler W, et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Reports. 2017;8:1727–42. https://doi.org/10.1016/j.stemcr.2017.05.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Danovich L, et al. The influence of clozapine treatment and other antipsychotics on the 18 kDa translocator protein, formerly named the peripheral-type benzodiazepine receptor, and steroid production. Eur Neuropsychopharmacol. 2008;18:24–33. https://doi.org/10.1016/j.euroneuro.2007.04.005.

    Article  CAS  PubMed  Google Scholar 

  82. Horti AG, et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci U S A. 2019;116:1686–91. https://doi.org/10.1073/pnas.1812155116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stratoulias V, Venero JL, Tremblay M, Joseph B. Microglial subtypes: diversity within the microglial community. The EMBO J. 2019;38. https://doi.org/10.15252/embj.2019101997.

  84. Bisht K, et al. Dark microglia: a new phenotype predominantly associated with pathological states. Glia. 2016;64:826–39. https://doi.org/10.1002/glia.22966.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gerrits E, Heng Y, Boddeke EWGM, Eggen BJL. Transcriptional profiling of microglia; current state of the art and future perspectives. Glia. 2020;68:740–55. https://doi.org/10.1002/glia.23767.

    Article  PubMed  Google Scholar 

  86. Böttcher C, et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat Neurosci. 2019;22:78–90. https://doi.org/10.1038/s41593-018-0290-2.

    Article  CAS  PubMed  Google Scholar 

  87. Sankowski R, et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat Neurosci. 2019;22:2098–110. https://doi.org/10.1038/s41593-019-0532-y.

    Article  CAS  PubMed  Google Scholar 

  88. Sommer IE, et al. Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull. 2014;40:181–91. https://doi.org/10.1093/schbul/sbt139.

    Article  PubMed  Google Scholar 

  89. Singh K, et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A. 2014;111:15550–5. https://doi.org/10.1073/pnas.1416940111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li YJ, Zhang X, Li YM. Antineuroinflammatory therapy: potential treatment for autism spectrum disorder by inhibiting glial activation and restoring synaptic function. CNS Spectr. 2019; https://doi.org/10.1017/S1092852919001603.

  91. Akhondzadeh S, et al. Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized and placebo-controlled trial. Schizophr Res. 2007;90:179–85. https://doi.org/10.1016/j.schres.2006.11.016.

    Article  PubMed  Google Scholar 

  92. Laan W, et al. Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry. 2010;71:520–7. https://doi.org/10.4088/JCP.09m05117yel.

    Article  CAS  PubMed  Google Scholar 

  93. Müller N. COX-2 inhibitors, aspirin, and other potential anti-inflammatory treatments for psychiatric disorders. Front Psych. 2019;10 https://doi.org/10.3389/fpsyt.2019.00375.

  94. Inta D, Lang UE, Borgwardt S, Meyer-Lindenberg A, Gass P. Microglia activation and schizophrenia: lessons from the effects of minocycline on postnatal neurogenesis, neuronal survival and synaptic pruning. Schizophr Bull. 2017;43:493–6. https://doi.org/10.1093/schbul/sbw088.

    Article  PubMed  Google Scholar 

  95. Solmi M, Correll CU. Adjunctive minocycline in schizophrenia: what one well-conducted study can tell us (and what it can’t). Evid Based Ment Health. 2019;22:E3. https://doi.org/10.1136/ebmental-2018-300070.

    Article  PubMed  Google Scholar 

  96. Hasselmann J, et al. Development of a chimeric model to study and manipulate human microglia in vivo. Neuron. 2019;103:1016–1033.e10. https://doi.org/10.1016/j.neuron.2019.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kapur S, Vanderspek SC, Brownlee BA, Nobrega JN. Antipsychotic dosing in preclinical models is often unrepresentative of the clinical condition: a suggested solution based on in vivo occupancy. J Pharmacol Exp Ther. 2003;305:625–31. https://doi.org/10.1124/jpet.102.046987.

    Article  CAS  PubMed  Google Scholar 

  98. Vernon AC, Natesan S, Modo M, Kapur S. Effect of chronic antipsychotic treatment on brain structure: a serial magnetic resonance imaging study with ex vivo and postmortem confirmation. Biol Psychiatry. 2011;69:936–44. https://doi.org/10.1016/j.biopsych.2010.11.010.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Vernon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Couch, A.C.M., Vernon, A.C. (2021). Microglia and Psychiatric Disorders. In: Berk, M., Leboyer, M., Sommer, I.E. (eds) Immuno-Psychiatry. Springer, Cham. https://doi.org/10.1007/978-3-030-71229-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71229-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71228-0

  • Online ISBN: 978-3-030-71229-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics