Skip to main content

Pro-inflammatory Cytokines and the Depressive Phenotype

  • Chapter
  • First Online:
Immuno-Psychiatry

Abstract

In this review, the evidence is summarized implicating chronic low-grade inflammation in the pathophysiology of major depression. The possible mechanisms whereby such inflammatory changes lead to aberrant endocrine and neurotransmitter functions are also outlined and implicate the pro-inflammatory cytokines which are released from activated microglia as the primary cause in brain structure and function. It is now apparent that the inflammasome complex, which is located in the microglia, plays a crucial role in initiating the cytokine response.

The review concludes with a brief discussion of the need to develop drugs that specifically target the inflammasome complex and the potential difficulties that may arise from such procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonard BE. Inflammation and depression: a causal or co-incidental link to the pathophysiology? Acta Neuropsychiatrica. 2018;30:1–16.

    Article  PubMed  Google Scholar 

  2. Maes M, Song C, Lin A, De Jongh R, Van Gastel A, Kenis G, Bosmans E, De Meester I, Benoy I, Neels H, Demedts P, Janca A, Scharpé S, Smith RS. The effects of psychological stress on humans: increased production of proinflammatory cytokines and Th1-like response in stress induced anxiety. Cytokine. 1998;10:313–8.

    Article  CAS  PubMed  Google Scholar 

  3. Raison CL, Miller AH. The evolutionary significance of depression in pathogen host defence (PATHOS-D). Mol Psychiatry. 2013;18(1):15–37.

    Article  CAS  PubMed  Google Scholar 

  4. Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: the role and consequences. Neurosci Res. 2014;79:1–12.

    Article  CAS  PubMed  Google Scholar 

  5. Maes M, Meltzer HY, Bosmans E, Bergmans R, Vandoolaeghe E, Ranjan R, Desnyder R. Increased plasma concentrations of IL-6, soluble IL-6, soluble IL-2 and transferrin receptor in major depression. J Affect Disord. 1995;34:301–9.

    Article  CAS  PubMed  Google Scholar 

  6. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31.

    Article  CAS  PubMed  Google Scholar 

  7. Hosoda S, Takimura H, Shibayama M, Kanamura H, Ikeda K, Kumada H. Psychiatric symptoms related to interferon therapy for chronic hepatitis: clinical features and prognosis. Psychiatry Clin Neurosci. 2000;54:565–72.

    Article  CAS  PubMed  Google Scholar 

  8. Valentine AD, Meyers CA, Kling MA, Richelson E, Hauser P. Mood and cognitive side effects of interferon therapy. Semin Oncol. 1998;25(Suppl.1):39–47.

    CAS  PubMed  Google Scholar 

  9. Maes M, Scharpé S, Van Grootel L, Uyttenbroeck W, Cooreman W, Cosyns P, Suy E. Higher alpha-1 and antitrypsin, haptoglobin, ceruloplasmin and lower retinol binding protein during depression: further evidence for the existence of an inflammatory response during that illness. J Affect Disord. 1992;24:183–92.

    Article  CAS  PubMed  Google Scholar 

  10. Sluzewska A, Rybakowski JK, Laciak M, Mackiewicz A, Sobieska M, Wiktorowicz K. IL-6 levels in depressed patients before and after treatment with fluoxetine. Ann N Y Acad Sci. 1995;762:474–6.

    Article  CAS  PubMed  Google Scholar 

  11. Birmaher B, Rabin RA, Garcia MR, Jain U, Whiteside TL, Williamson DE, al-Shabbout M, Nelson BC, Dahl RE, Ryan ND. Cellular immunity in depressed, conduct disorder and normal adolescents: role of adverse life events. J Child Adolesc Psychiatry. 1994;33:671–8.

    Google Scholar 

  12. Maes M, Lambrechts J, Suy E, Vandervorst C, Bosmans E. Absolute number and percentage of circulating natural killer cells, non MHC restricted T-cytotoxic and phagocytic cells in unipolar depression. Neuropsychobiology. 1994;29:157–63.

    Article  CAS  PubMed  Google Scholar 

  13. Myint AM, Leonard BE, Steinbusch HW, Kim YK. Th-1,Th-2 and Th-3 cytokine alterations in major depression. J Affect Disord. 2005;88:167–73.

    Article  CAS  PubMed  Google Scholar 

  14. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression in association with suicide. J Psychiatr Res. 2008;42:151–7.

    Article  PubMed  Google Scholar 

  15. Campuzano O, Castillo-Ruiz MM, Acarin L, Castellano B, Gonzalez B. Distinct patterns ofmicroglial response, cyclooxygenase-2 and inducible nitric oxide synthase expression in aged rat brain after excitotoxic damage. J Neurosci Res. 2008;86:3170–83.

    Google Scholar 

  16. Kim YK, Won E. The influence of stress on neuroinflammation and alteration in brain structure and function in major depression. Behav Brain Res. 2017;329:6–11.

    Google Scholar 

  17. Leonard BE, Wegener G. Inflammation, insulin resistance and neuroprogression in depression. Acta Neuropsychiatr. 2019;12:1–9.

    Google Scholar 

  18. Ader R, Cohen N, Felten D. Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet. 1995;345:99–103.

    Google Scholar 

  19. Gold PW, Machado-Vieira R, Pavlatou MG. Clinical and biochemical manifestations of depression: relation to the neurobiology of stress. Neural Plast. 2015;2015:581976.

    Google Scholar 

  20. Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KR, Nemeroff CB, Bremner JD, Carney RM, Coyne JC, Delong MR, Frasure-Smith N, Glassman AH, Gold PW, Grant I, Gwyther L, Ironson G, Johnson RL, Kanner AM, Katon WJ, Kaufmann PG, Keefe FJ, Ketter T, Laughren TP, Leserman J, Lyketsos CG, McDonald WM, McEwen BS, Miller AH, Musselman D, O’Connor C, Petitto JM, Pollock BG, Robinson RG, Roose SP, Rowland J, Sheline Y, Sheps DS, Simon G, Spiegel D, Stunkard A, Sunderland T, Tibbits P Jr, Valvo WJ. Mood disorders in the medically ill: Scientific review and recommendations. Biol Psychiat. 2005;58:175–89.

    Google Scholar 

  21. Raison C. When not enough is too much: the role of insufficient glucocorticoids signalling in the pathophysiology of stress related disorders. Am J Phys. 2003;160:1554–65.

    Google Scholar 

  22. Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM. The stressed CNS: when glucocorticoids aggregate in inflammation. Neuron. 2009;64:33–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smyth GP, Stapleton PP, Freeman TA, Concannon EM, Mestre JR, Duff M, Maddali S, Daly JM. Glucocorticoid pretreatment induces cytokine over expression and nuclear factor-B activation in macrophages. J Surg Res. 2004;261:253–61.

    Article  CAS  Google Scholar 

  24. Tracey K. Physiology and immunology of the cholinergic anti-inflammatory pathway. J Clin Invest. 2007;117:289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yeager M, Pioli P, Guyre P. Cortisol exerts bi-phasic regulation on inflammation in humans. Dose-Response. 2011;1949:332–47.

    Google Scholar 

  26. Herbert J, Goodyer I, Grossman AB, Hastings MH, de Kloet ER, Lightman SL, Lupien SJ, Roozendaal B, Seckl JR. Do glucocorticoids damage the brain? J Neuroendocrinol. 2006;18:393–411.

    Article  CAS  PubMed  Google Scholar 

  27. Winokur A, Maislui G, Phillipps JL, Amsterdam JD. Insulin resistance after oral glucose tolerance testing in patients with major depression. Am J Psychiatry. 1988;145:325–30.

    Article  CAS  PubMed  Google Scholar 

  28. Weinstein SP, Paquin T, Pritsker A, Haber RS. Glucocorticoid induced insulin resistance: dexamethasone inhibits the activation of both insulin related and non-insulin related stimuli. Diabetes. 1995;44:441–5.

    Article  CAS  PubMed  Google Scholar 

  29. Iwata M, Ota KT, Duman RS. The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun. 2013;31:105–14.

    Article  CAS  PubMed  Google Scholar 

  30. Fleshner M, Frank M, Maier SF. Danger signals and inflammasomes: stress-evoked sterile inflammation in mood disorders. Neuropsychopharmacology. 2017;42(1):36–45.

    Article  CAS  PubMed  Google Scholar 

  31. de Rivero Vaccari JP, Dietrich WD, Keane RW. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab. 2014;34(3):369–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sahin C, Aricioglu F. Future directions of cytokine hypothesis in depression: NLRP3 inflammasome. Bull Clin Psychopharmacol. 2013;23(3):280–8.

    Article  CAS  Google Scholar 

  34. Sahin C, Dursun S, Cetin M, Aricioglu F. The neuroinflammation perspective of depression: reuniting the outstanding mechanisms of the pathophysiology. Bull Clin Psychopharmacol. 2016b;26(2):196–206.

    Article  CAS  Google Scholar 

  35. Kaufmann FN, Costa AP, Ghisleni G, Diaz AP, Rodrigues AL, Peluffo H, Kaster MP. Nlrp3 inflammasome-driven pathways in depression: clinical and preclinical findings. Brain Behav Immun. 2017;64:367–83.

    Article  CAS  PubMed  Google Scholar 

  36. Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol. 2014;258:5–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86: 973–83.

    Google Scholar 

  38. Taguchi T, Mitcham JL, Dower SK, Sims JE, Testa JR. Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4p14. Genomics. 1996;32:486–8.

    Google Scholar 

  39. Sahin Ozkartal C. Investigating the association between NOD like receptor protein 3 inflammasome mediated inflammatory pathways and nitridergic system in a rat model of depression (Doctoral dissertation thesis). Marmara University, Institute of Health Sciences, 2017 (Supervisor: Prof. Feyza Aricioglu) (in Turkish).

    Google Scholar 

  40. Di Virgilio F. The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol Rev. 2013;65(3):872–905.

    Article  PubMed  CAS  Google Scholar 

  41. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.

    Article  CAS  PubMed  Google Scholar 

  42. Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD. Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab. 2009;29(3):534–44.

    Article  CAS  PubMed  Google Scholar 

  43. Adamczak SE, de Rivero Vaccari JP, Dale G, Brand FJ 3rd, Nonner D, Bullock MR, Dahl GP, Dietrich WD, Keane RW. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J Cereb Blood Flow Metab. 2014;34(4):621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW. A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci. 2008;28(13):3404–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008;9(8):857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Minkiewicz J, de Rivero Vaccari JP, Keane RW. Human astrocytes express a novel NLRP2 inflammasome. Glia. 2013;61(7):1113–21.

    Article  PubMed  Google Scholar 

  47. Freeman LC, Ting JP. The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem. 2016;136(Suppl 1):29–38.

    Article  CAS  PubMed  Google Scholar 

  48. Kersse K, Bertrand MJ, Lamkanfi M, Vandenabeele P. NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev. 2011;22(5-6):257–76.

    Article  CAS  PubMed  Google Scholar 

  49. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32.

    Article  CAS  PubMed  Google Scholar 

  50. Shi F, Yang Y, Kouadir M, Fu Y, Yang L, Zhou X, Yin X, Zhao D. Inhibition of phagocytosis and lysosomal acidification suppresses neurotoxic prion peptide-induced NALP3 inflammasome activation in BV2 microglia. J Neuroimmunol. 2013;260(1-2):121–5.

    Article  CAS  PubMed  Google Scholar 

  51. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iwata M, Ota KT, Li XY, Sakaue F, Li N, Dutheil S, Banasr M, Duric V, Yamanashi T, Kaneko K, Rasmussen K, Glasebrook A, Koester A, Song D, Jones KA, Zorn S, Smagin G, Duman RS. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry. 2016b;80(1):12–22.

    Article  CAS  PubMed  Google Scholar 

  53. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674–8.

    Article  CAS  PubMed  Google Scholar 

  54. Liu L, Chan C. Activation of NLC4 inflammasome in primary rat astrocytes by palmitate enhances Alzheimer’s disease-like changes in primary neurons. Alzheimer’s and Dementia. 2012;8(4):302.

    Google Scholar 

  55. Lane T, Flam B, Lockey R, Kolliputi N. TXNIP shuttling: missing link between oxidative stress and inflammasome activation. Front Physiol. 2013;4:50.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Choi AJ, Ryter SW. Inflammasomes: molecular regulation and implications for metabolic and cognitive diseases. Mol Cell. 2014;37(6):441–8.

    Article  CAS  Google Scholar 

  57. de Rivero Vaccari JP, Bastien D, Yurcisin G, Pineau I, Dietrich WD, De Koninck Y, Keane RW, Lacroix S. P2X4 receptors influence inflammasome activation after spinal cord injury. J Neurosci. 2012;32(9):3058–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G. The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem. 2009;284(27):18143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. North RA, Surprenant A. Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol. 2000;40:563–80.

    Article  CAS  PubMed  Google Scholar 

  60. Bodin P, Burnstock G. ATP-stimulated release of ATP by human endothelial cells. J Cardiovasc Pharmacol. 1996;27(6):872–5.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–40.

    Article  CAS  PubMed  Google Scholar 

  62. Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C. NLRP3 inflammasome and its inhibitors. Front Pharmacol. 2015;6:1–9.

    Article  CAS  Google Scholar 

  63. Ratsimandresy RA, Dorfleutner A, Stehlik C. An update on pyrin domain-containing pattern recognition receptors: from immunity to pathology. Front Immunol. 2013;4:440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Bauer C, Duewell P, Mayer C, Lehr HA, Fitzgerald KA, Dauer M, Tschopp J, Endres S, Latz E, Schnurr M. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut. 2010;59(9):1192–9.

    Article  CAS  PubMed  Google Scholar 

  65. Guarda G, So A. Regulation of inflammasome activity. Immunology. 2010;130(3):329–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kubota T, Koike R. Cryopyrin-associated periodic syndromes: background and therapeutics. Mod Rheumatol. 2010;20(3):213–21.

    Article  PubMed  Google Scholar 

  67. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, Mullooly N, Mielke LA, Harris J, Coll RC, Mills KH, Mok KH, Newsholme P, Nunez G, Yodoi J, Kahn SE, Lavelle EC, O’Neill LA. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol. 2010;11(10):897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, Brickey WJ, Ting JP. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett. 1995;202(1-2):17–20.

    Article  CAS  PubMed  Google Scholar 

  70. Vehmas AK, Kawas CH, Stewart WF, Troncoso JC. Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging. 2003;24(2):321–31.

    Article  PubMed  Google Scholar 

  71. Pontillo A, Catamo E, Arosio B, Mari D, Crovella S. NALP1/NLRP1 genetic variants are associated with Alzheimer disease. Alzheimer Dis Assoc Disord. 2012;26(3):277–81.

    Article  CAS  PubMed  Google Scholar 

  72. Tan MS, Tan L, Jiang T, Zhu XC, Wang HF, Jia CD, Yu JT. Amyloid-beta induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis. 2014;5:1382.

    Article  CAS  Google Scholar 

  73. Alcocer-Gomez E, de Miguel M, Casas-Barquero N, Nunez-Vasco J, Sanchez-Alcazar JA, Fernandez-Rodriguez A, Cordero MD. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun. 2014;36:111–7.

    Article  CAS  PubMed  Google Scholar 

  74. Alcocer-Gomez E, Ulecia-Moron C, Marin-Aguilar F, Rybkina T, Casas-Barquero N, Ruiz-Cabello J, Ryffel B, Apetoh L, Ghiringhelli F, Bullon P, Sanchez-Alcazar JA, Carrion AM, Cordero MD. Stress-induced depressive behaviors require a functional NLRP3 inflammasome. Mol Neurobiol. 2016;53(7):4874–82.

    Article  CAS  PubMed  Google Scholar 

  75. Baune BT. Inflammation and neurodegenerative disorders: is there still hope for therapeutic intervention? Curr Opin Psychiatry. 2015;28(2):148–54.

    Article  PubMed  Google Scholar 

  76. Li R, Wang X, Qin T, Qu R, Ma S. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1beta production and NLRP3 inflammasome activation in the rat brain. Behav Brain Res. 2016;296:318–25.

    Article  CAS  PubMed  Google Scholar 

  77. Lu M, Yang JZ, Geng F, Ding JH, Hu G. Iptakalim confers an antidepressant effect in a chronic mild stress model of depression through regulating neuro-inflammation and neurogenesis. Int J Neuropsychopharmacol. 2014;17(9):1501–10.

    Article  CAS  PubMed  Google Scholar 

  78. Pan Y, Chen XY, Zhang QY, Kong LD. Microglial NLRP3 inflammasome activation mediates IL-1beta-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun. 2014;41:90–100.

    Article  CAS  PubMed  Google Scholar 

  79. Sahin C, Albayrak O, Akdeniz TF, Akbulut Z, Yanikkaya Demirel G, Aricioglu F. Agmatine reverses sub-chronic stress-induced nod-like receptor protein 3 (NLRP3) activation and cytokine response in rats. Basic Clin Pharmacol Toxicol. 2016a;119(4):367–75.

    Article  CAS  PubMed  Google Scholar 

  80. Xue J, Li H, Deng X, Ma Z, Fu Q, Ma S. L-Menthone confers antidepressant-like effects in an unpredictable chronic mild stress mouse model via NLRP3 inflammasome-mediated inflammatory cytokines and central neurotransmitters. Pharmacol Biochem Behav. 2015;134:42–8.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang Y, Liu L, Peng YL, Liu YZ, Wu TY, Shen XL, Zhou JR, Sun DY, Huang AJ, Wang X, Wang YX, Jiang CL. Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci Ther. 2014;20(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Y, Liu L, Liu YZ, Shen XL, Wu TY, Zhang T, Wang W, Wang YX, Jiang CL. NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int J Neuropsychopharmacol. 2015;18:8.

    Article  CAS  Google Scholar 

  83. Zhang ZT, Du XM, Ma XJ, Zong Y, Chen JK, Yu CL, Liu YG, Chen YC, Zhao LJ, Lu GC. Activation of the NLRP3 inflammasome in lipopolysaccharide-induced mouse fatigue and its relevance to chronic fatigue syndrome. J Neuroinflammation. 2016;13(1):71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lei Y, Chen CJ, Yan XX, Li Z, Deng XH. Early-life lipopolysaccharide exposure potentiates forebrain expression of NLRP3 inflammasome proteins and anxiety-like behavior in adolescent rats. Brain Res. 2017;1671:43–54.

    Article  CAS  PubMed  Google Scholar 

  85. Dang R, Zhou X, Tang M, Xu P, Gong X, Liu Y. Fish oil supplementation attenuates neuroinflammation and alleviates depressive-like behavior in rats submitted to repeated lipopolysaccharide. Eur J Nutr. 2018;57(3):893–906.

    Article  CAS  PubMed  Google Scholar 

  86. Zhu W, Cao FS, Feng J, Chen HW, Wan JR, Lu Q. NLRP3 inflammasome activation contributes to long-term behavioral alterations in mice injected with lipopolysaccharide. Neuroscience. 2017;343:77–84.

    Article  CAS  PubMed  Google Scholar 

  87. Yue N, Huang H, Zhu X, Han Q, Wang Y, Li B. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation. 2017;14(1):102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Su WJ, Zhang Y, Chen Y, Gong H, Lian YJ, Peng W. NLRP3 gene knockout blocks NF-kappaB and MAPK signaling pathway in CUMS-induced depression mouse model. Behav Brain Res. 2017;322(Pt A):1–8.

    Article  CAS  PubMed  Google Scholar 

  89. Liu B, Xu C, Wu X, Liu F, Du Y, Sun J. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience. 2015;294:193–205.

    Article  CAS  PubMed  Google Scholar 

  90. Deng XY, Li HY, Chen JJ, Li RP, Qu R, Fu Q, Ma SP. Thymol produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in mice. Behav Brain Res. 2015a;291:12–9.

    Article  CAS  PubMed  Google Scholar 

  91. Deng XY, Xue JS, Li HY, Ma ZQ, Fu Q, Qu R, Ma SP. Geraniol produces antidepressant-like effects in a chronic unpredictable mild stress mice model. Physiol Behav. 2015b;152(Pt A):264–71.

    Article  CAS  PubMed  Google Scholar 

  92. Cao C, Su M, Zhou F. Mangiferin inhibits hippocampal NLRP3 inflammasome and exerts antidepressant effects in a chronic mild stress mice model. Behav Pharmacol. 2017;28(5):356–64.

    Article  CAS  PubMed  Google Scholar 

  93. Aricioglu F, Ozkartal CS, Bastaskin T, Tüzün E, Kandemir C, Sirvanci S, Kucukali CI, Utkan T. Antidepressant-like effects induced by chronic blockade of the purinergic 2X7 receptor through inhibition of nod-like receptor protein 1 inflammasome in chronic unpredictable mild stress model of depression in rats. Clin Psychopharmacol Neurosci. 2019;17(2):261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jia KK, Zheng YJ, Zhang YX, Liu JH, Jiao RQ, Pan Y. Banxia-houpu decoction restores glucose intolerance in CUMS rats through improvement of insulin signaling and suppression of NLRP3 inflammasome activation in liver and brain. J Ethnopharmacol. 2017;209:219–29.

    Article  PubMed  Google Scholar 

  95. Liu YM, Shen JD, Xu LP, Li HB, Li YC, Yi LT. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int Immunopharmacol. 2017;45:128–34.

    Article  PubMed  CAS  Google Scholar 

  96. Cheng Y, Pardo M, de Souza Armini R, Martinez A, Mouhsine H, Zagury JF, Jope RS, Beurel E. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior. Brain Behav Immun. 2016;53:207–22.

    Google Scholar 

  97. Slusarczyk J, Trojan E, Wydra K, Glombik K, Chamera K, Kucharczyk M, Budziszewska B, Kubera M, Lason W, Filip M, Basta-Kaim A. Beneficial impact of intracerebroventricular fractalkine administration on behavioral and biochemical changes induced by prenatal stress in adult rats: possible role of NLRP3 inflammasome pathway. Biochem Pharmacol. 2016;113:45–56.

    Article  CAS  PubMed  Google Scholar 

  98. Xu Y, Sheng H, Bao Q, Wang Y, Lu J, Ni X. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav Immun. 2016;56:175–86.

    Article  CAS  PubMed  Google Scholar 

  99. Wang Y, Xu Y, Sheng H, Ni X, Lu J. Exercise amelioration of depression-like behavior in OVX mice is associated with suppression of NLRP3 inflammasome activation in hippocampus. Behav Brain Res. 2016;307:18–24.

    Article  CAS  PubMed  Google Scholar 

  100. Momeni M, Ghorban K, Dadmanesh M, Khodadadi H, Bidaki R, Kazemi Arababadi M, Kennedy D. ASC provides a potential link between depression and inflammatory disorders: a clinical study of depressed Iranian medical students. Nord J Psychiatry. 2016;70(4):280–4.

    Article  PubMed  Google Scholar 

  101. Alcocer-Gomez E, Casas-Barquero N, Williams MR, Romero-Guillena SL, Canadas-Lozano D, Bullon P, Sanchez-Alcazar JA, Navarro-Pando JM, Cordero MD. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in Major depressive disorder. Pharmacol Res. 2017;121:114–21.

    Article  CAS  PubMed  Google Scholar 

  102. Iwata M, Ishida H, Kaneko K, Shirayama Y. Learned helplessness activates hippocampal microglia in rats: a potential target for the antidepressant imipramine. Pharmacol Biochem Behav. 2016a;150–151:138–46.

    Article  PubMed  CAS  Google Scholar 

  103. Du RH, Tan J, Sun XY, Lu M, Ding JH, Hu G. Fluoxetine inhibits NLRP3 inflammasome activation: implication in depression. Int J Neuropsychopharmacol. 2016;19:9.

    Article  Google Scholar 

  104. Sahin Ozkartal C, Aricioglu F, Tuzun E, Kucukali CI. Chronic mild stress-induced anhedonia in rats is coupled with the upregulation of inflammasome sensors: a possible involvement of NLRP1. Psychiat Clin Psyhopharm. 2018;28(3):236–44.

    Google Scholar 

  105. Hu W, Zhang Y, Wu W, Yin Y, Huang D, Wang Y, Li W, Li W. Chronic glucocorticoids exposure enhances neurodegeneration in the frontal cortex and hippocampus via NLRP-1 inflammasome activation in male mice. Brain Behav Immun. 2016;52:58–70.

    Article  CAS  PubMed  Google Scholar 

  106. Dolati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL. A meta analysis of cytokines in major depression. Biol Psychiatry. 2010;67:446–57.

    Article  CAS  Google Scholar 

  107. Hannestadt J, Della Giola N, Block M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology. 2011;36:2452–9.

    Article  CAS  Google Scholar 

  108. Halaris A, Leonard BE. Unravelling the complex interplay of immunometabolic systems that contribute to the neuroprogression of psychiatric disorders. Neurol Psychiatry Brain Res. 2019;32:111–21.

    Article  Google Scholar 

  109. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, Lalla D, Woolley M, Jahreis A, Zitnik R, Cella D, Krishnan R. Etanercept, and clinical outcome, fatigue syndrome and depression in psoriasis: a double blind placebo controlled randomised trial. Lancet. 2006;367:29–35.

    Article  CAS  PubMed  Google Scholar 

  110. Levine J, Cholestoy A, Zimmerman J. Possible antidepressant effects of monocycline. Am J Psychiatry. 1996;153:582–5.

    Article  CAS  PubMed  Google Scholar 

  111. Haapakoski R, Ebmeier KP, Alenius H, Kivimaki M. Innate and adaptive immunity in the development of depression: an update on current knowledge and technological advances. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;66:63–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Some parts of this review were prepared from Ceren Sahin Ozkartal’s Ph.D. dissertation thesis. (in Turkish).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian E. Leonard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aricioglu, F., Ozkartal, C.S., Leonard, B.E. (2021). Pro-inflammatory Cytokines and the Depressive Phenotype. In: Berk, M., Leboyer, M., Sommer, I.E. (eds) Immuno-Psychiatry. Springer, Cham. https://doi.org/10.1007/978-3-030-71229-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71229-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71228-0

  • Online ISBN: 978-3-030-71229-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics