Skip to main content

Ultra Thin Nanocomposite In-Sole Pressure Sensor Matrix for Gait Analysis

  • Chapter
  • First Online:
Advanced Sensors for Biomedical Applications

Abstract

Gait analysis plays an important role in various applications such as health care, clinical rehabilitation, sport training and pedestrian navigation. In order to monitor the human gait, an interesting approach is to analyze the foot plantar pressure distribution between the foot and the ground. In recent years, the emergence of flexible, soft and lightweight sensors facilitates the rapid technological advances in in-shoe foot pressure measurements, thereby especially carbon nanotubes-based sensors provide an outstanding solution for the implementation of flexible, soft pressure sensors in foot pressure distribution analysis. This chapter focuses on the design and implementation of multiwalled carbon nanotubes (CNT)/polydimethylsil-oxane (PDMS) based nanocomposite pressure sensors for the analysis of the foot pressure distribution. The sensor is durable, stable and shows sensitivity of 3.3 k\({\Omega }\)/kPa and hysteresis smaller than 3.64% with maximum detectable pressure up to 217 kPa, which is suitable for the measurement of human foot pressure. The proposed sensor has been implemented in a flexible in-sole, which is designed based on normal arch foot anatomy. A total of 12 sensors are distributed in the heel, lateral back foot, midfoot and front foot. The foot pressure distribution for different persons while walking and standing using nanocomposite sensor based in-sole were investigated by measuring the changing in resistance of the pressure sensors, when pressure applied on it. It shows that foot pressure distribution is higher in the fore foot and the heel while person standing in normal position. While walking, initially the foot pressure is in the heel and then transferred to the entire foot and finally it is concentrated on the fore foot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Razak, A. H., Zayegh, A., Begg, R. K., & Wahab, Y. (2012). Foot plantar pressure measurement system: A review. Sensors, 12(7), 9884–9912.

    Article  Google Scholar 

  • Canavese, G., Stassi, S., Fallauto, C., Corbellini, S., Cauda, V., Di Donato, M., Pirola, M., & Pirri, F. C. (2014). Stretchable and wearable piezoresistive insole for continuous pressure monitoring. Key Engineering Materials, 605, 474–477. Trans Tech Publications

    Google Scholar 

  • Cheng, M.-Y., Tsao, C.-M., Lai, Y.-Z., & Yang, Y.-J. (2011). The development of a highly twistable tactile sensing array with stretchable helical electrodes. Sensors and Actuators A: Physical, 166(2), 226–233.

    Article  CAS  Google Scholar 

  • Crawford, F., Nicolson, D. J., Amanna, A. E., Martin, A., Gupta, S., Leese, G. P., et al. (2020). Preventing foot ulceration in diabetes: Systematic review and meta-analyses of rct data. Diabetologia, 63(1), 49–64.

    Article  Google Scholar 

  • da Costa, T. H., & Choi, J.-W. (2017). A flexible two dimensional force sensor using PDMS nanocomposite. Microelectronic Engineering, 174, 64–69.

    Article  Google Scholar 

  • Federation, I. D. (2020). IDF Diabetes Atlas, 9th edn., Brussels, Belgium. https://www.diabetesatlas.org. Accessed 2 July 2019.

  • Franklin, S., Grey, M. J., Heneghan, N., Bowen, L., & Li, F.-X. (2015). Barefoot vs common footwear: A systematic review of the kinematic, kinetic and muscle activity differences during walking. Gait & Posture, 42(3), 230–239.

    Article  Google Scholar 

  • Huang, W., Dai, K., Zhai, Y., Liu, H., Zhan, P., Gao, J., et al. (2017). Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability. ACS Applied Materials & Interfaces, 9(48), 42266–42277.

    Article  CAS  Google Scholar 

  • Jeffcoate, W. J., & Harding, K. G. (2003). Diabetic foot ulcers. The Lancet, 361(9368), 1545–1551.

    Article  Google Scholar 

  • Kanoun, O., Bouhamed, A., Ramalingame, R., Bautista-Quijano, J. R., Rajendran, D., & Al-Hamry, A. (2021). Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors. Sensors, 21(2), 341; 1–29.

    Google Scholar 

  • Kanoun, O., Müller, C., Benchirouf, A., Sanli, A., Dinh, T. N., Al-Hamry, A., et al. (2014). Flexible carbon nanotube films for high performance strain sensors. Sensors, 14(6), 10042–10071.

    Article  CAS  Google Scholar 

  • Karimov, K. S., Sulaiman, K., Ahmad, Z., Akhmedov, K., & Mateen, A. (2015). Novel pressure and displacement sensors based on carbon nanotubes. Chinese Physics B, 24(1)

    Google Scholar 

  • Kong, K., & Tomizuka, M. (2008). Smooth and continuous human gait phase detection based on foot pressure patterns. In 2008 IEEE International Conference on Robotics and Automation (pp. 3678–3683). IEEE.

    Google Scholar 

  • Lee, D.-W., & Choi, Y.-S. (2008). A novel pressure sensor with a PDMS diaphragm. Microelectronic Engineering, 85(5–6), 1054–1058.

    Article  CAS  Google Scholar 

  • Lin, F., Wang, A., Zhuang, Y., Tomita, M. R., & Xu, W. (2016). Smart insole: A wearable sensor device for unobtrusive gait monitoring in daily life. IEEE Transactions on Industrial Informatics, 12(6), 2281–2291.

    Article  Google Scholar 

  • Lou, C., Wang, S., Liang, T., Pang, C., Huang, L., Run, M., et al. (2017). A graphene-based flexible pressure sensor with applications to plantar pressure measurement and gait analysis. Materials, 10(9), 1068.

    Article  Google Scholar 

  • Lyons, T. E., Rosenblum, B. I., & Veves, A. (2006). Foot pressure abnormalities in the diabetic foot. In The Diabetic Foot, (pp. 163–184). Berlin: Springer.

    Google Scholar 

  • Maddipatla, D., Narakathu, B. B., Ali, M. M., Chlaihawi, A. A., & Atashbar, M. Z. (2017). Development of a novel carbon nanotube based printed and flexible pressure sensor. In 2017 IEEE Sensors Applications Symposium (SAS) (pp. 1–4). IEEE.

    Google Scholar 

  • Nobeshima, T., Uemura, S., Yoshida, M., & Kamata, T. (2016). Stretchable conductor from oriented short conductive fibers for wiring soft electronics. Polymer Bulletin, 73(9), 2521–2529.

    Article  CAS  Google Scholar 

  • Pyo, S., Jo, E., Kwon, D.-S., Kim, W., Chang, W., & Kim, J. (2017). Fabrication of carbon nanotube-coated fabric for highly sensitive pressure sensor. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (pp. 962–965). IEEE.

    Google Scholar 

  • Ramalingame, R., Hu, Z., Gerlach, C., & Kanoun, O. (2017a). Shoe insole with mwcnt-pdms-composite sensors for pressure monitoring. In 2017 IEEE Sensors (pp. 1–3). IEEE.

    Google Scholar 

  • Ramalingame, R., Rajendran, D., & Kanoun, O. (2017b). Method optimization of mwnct/pdms nanocomposites using organic solvents. Printed Future Days 2017 (pp. 121–125).

    Google Scholar 

  • Ramalingame, R., Lakshmanan, A., Müller, F., Thomas, U., & Kanoun, O. (2019). Highly sensitive capacitive pressure sensors for robotic applications based on carbon nanotubes and pdms polymer nanocomposite. Journal of Sensors and Sensor Systems, 8(1), 87–94.

    Google Scholar 

  • Sepulveda, A. T., Fachin, F., de Villoria, R. G., Wardle, B. L., Viana, J. C., Pontes, A. J., et al. (2011). Nanocomposite flexible pressure sensor for biomedical applications. Procedia Engineering, 25, 140–143.

    Article  CAS  Google Scholar 

  • Shu, L., Hua, T., Wang, Y., Li, Q., Feng, D. D., & Tao, X. (2010). In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Transactions on Information Technology in Biomedicine, 14(3), 767–775.

    Google Scholar 

  • Soetanto, W., Nguyen, N. T., & Wang, W.-C. (2011). Fiber optic plantar pressure, shear sensor. In Health Monitoring of Structural and Biological Systems 2011 (Vol. 7984, p. 79840Z). International society for optics and photonics

    Google Scholar 

  • So, H.-M., Sim, J. W., Kwon, J., Yun, J., Baik, S., & Chang, W. S. (2013). Carbon nanotube based pressure sensor for flexible electronics. Materials Research Bulletin, 48(12), 5036–5039.

    Article  CAS  Google Scholar 

  • Sousa, P. J., Silva, L. R., Goncalves, L. M., & Minas, G. (2015). Patterned CNT-PDMS nanocomposites for flexible pressure sensors. In 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG) (pp. 1–4). IEEE.

    Google Scholar 

  • Stalin, M. (2012). Development of a smart insole system for real-time detection of temporal gait parameters and related deviations in unilateral lower-limb amputees. Doctoral Dissertatin, University of Miami.

    Google Scholar 

  • Walther, M., Hörterer, H., & Hilgers, M. (2020). Foot injuries. In Injury and health risk management in sports (pp. 173–178). Berlin: Springer.

    Google Scholar 

  • Zulkifli, S. S., & Loh, W. P. (2020). A state-of-the-art review of foot pressure. Foot and Ankle Surgery, 26(1), 25–32.

    Article  Google Scholar 

Download references

Acknowledgements

The research work was carried out under the project “SenseCare—high-tech sensor technology for the challenge of demographic change in Saxony (100270070)” funded by the European Social Fund and the Free State of Saxony, “Landesinnovationsstipendium (100284169)”, funded by the Sächsische Aufbaubank (SAB) and the European Social Fund (ESF) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 416228727—SFB 1410, applicant Prof. Dr.-Ing. Olfa Kanoun.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhivakar Rajendran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajendran, D., Ben Atitallah, B., Ramalingame, R., Quijano Jose, R.B., Kanoun, O. (2021). Ultra Thin Nanocomposite In-Sole Pressure Sensor Matrix for Gait Analysis. In: Kanoun, O., Derbel, N. (eds) Advanced Sensors for Biomedical Applications. Smart Sensors, Measurement and Instrumentation, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-71225-9_2

Download citation

Publish with us

Policies and ethics