Skip to main content

Ecological Perspectives on Soil Microbial Community Involved in Nitrogen Cycling

  • Chapter
  • First Online:
Soil Nitrogen Ecology

Part of the book series: Soil Biology ((SOILBIOL,volume 62))

  • 1706 Accesses

Abstract

Soil is known as one of the most capable microorganism survival habitats. Diverse heterotrophic microbial species in the earth and their complex network of connexions allow the cycling of micro and macronutrients in their soil environment. Demands are addressed by the maintenance of soil fertility for sustainable plant productivity. The diverse interrelationship of various agroecosystem elements, living or not, influence the resources of crops and plants. Soil organic matter is, however, affected by the inputs of plants and also its chemistry uniqueness in each ecosystem’s microbium. Although it is generally recognised that the Soil Microbiome is essential, its complexity remains small. This would improve our ability to increase agricultural productivity by recognising the microbial diversity. Each environment becomes something by the inputs from plants and their chemistry special with the culture of microbials. The function of the microbiome of the soil is very important. We realise that we have still a small grasp of its complexity. Intelligence thus the microbial diversity would increase our agricultural potential performance. The soil is generally recognised as one of the world’s most hostile biological ecosystems. The Antartica’s ice-free regions covering about 0.44% of the overall continental land area, shelter significant and complex macro-organism populations and in particular the microorganisms of the more “hospitable” maritime regions. Nutrient cycling and habitat maintenance in soils is primarily guided by the microbial populations, as is the case with the McMurdo Dry Valleys of South Victoria Land, in the most extreme non-maritime areas. Nitrogen transactions are an important part of the environment maintenance. Bacteria diazotrophic and archaeal taxa add up to the genetic capacity of the elements from the whole n cycle, and nitrification processes like the anammox reaction are included. In the ensuing growth season, N cycling may have a major effect on the soil microbial population in bioavailable nitrogen cycling as well as microbial dynamics during plant dormitory season. The biogeochemical effects on bioavailable N cycles were not well defined, despite frequent observations of seasonal changes in microbial community composition in forestry. Here we investigate the relationship between microbial dynamics in communities and bioavailable N dynamics in a cool temperate Low Forest one-year environment, with an eye to sleeping season. Subsequent peaks in winter and early spring were also correlated with NH4+, NO−3, and dissolved bio-N concentrations. These results suggest that successive growth of litter degraders, ammonifier, nitrifiers, and denitrifies in the dormant season drives the subsequent bioavailable N transformation. After summarizing the recent findings, the novel process N-cycle microbes were characterized. Also, we explored the environmental importance of population dynamics in N cycling microbes, which is critical to our understanding of ecosystem feature stabilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhya TK (2017) Advances in soil microbiology: recent trends and future prospects. Springer, Singapore

    Book  Google Scholar 

  • Adriaenssens EM, Kramer R, Van Goethem MW, Makhalanyane TP, Hogg I, Cowan DA (2017) Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome 5:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Amarelle V, Carrasco V, Fabiano E (2019) The hidden life of Antarctic rocks. In: The ecological role of micro-organisms in the Antarctic environment. In: Castro-Sowinski S (ed) Springer, Cham, Switzerland, pp 221–237

    Google Scholar 

  • Anesio AM, Bellas CM (2011) Are low temperature habitats hot spots of microbial evolution driven by viruses? Trends Microbiol 19:52–57

    Article  CAS  PubMed  Google Scholar 

  • Asuming-Brempong S (2012) Microarray technology and its applicability in soil science—a short review. Open J Soil Sci 2:333–340

    Article  CAS  Google Scholar 

  • Ayton J, Aislabie J, Barker GM, Saul D, Turner S (2010) Crenarchaeota affiliated with group 1.1 b are prevalent in coastal mineral soils of the Ross Sea region of Antarctica. Environ Microbiol 12:689–703

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Balser TC, Wixon D, Moritz LK, Lipps L (2010) The microbiology of natural soils. In: Dixon GR, Tilston EL (eds) Soil microbiology and sustainable crop production. Springer, Berlin, pp 27–57

    Chapter  Google Scholar 

  • Bargett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31:317–321. https://doi.org/10.1016/S0038-0717(98)00121-7

    Article  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? a review of nitrate removal pathways. Front Ecol Environ 5:89–96

    Article  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Margesin R (2014) Cold-adapted yeasts: a lesson from the cold and a challenge for the XXI century. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin; Heidelberg, Germany, p 3

    Google Scholar 

  • Carson JK, Campbell L, Rooney D, Clipson N, Gleeson DB (2009) Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol Ecol 67:381–388. https://doi.org/10.1111/j.1574-6941.2008.00645

    Article  CAS  PubMed  Google Scholar 

  • Carson JK, Gonzalez-Quinones V, Murphy DV, Hinz C, Shaw JA, Gleeson DB (2010) Low pore connectivity increases bacterial diversity in soil. Appl Environ Microbiol 76:3936–3942. https://doi.org/10.1128/AEM.03085-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carson JK, Rooney D, Gleeson DB, Clipson N (2007) Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiol Ecol 61:414–423. https://doi.org/10.1111/j.1574-6941.2007.00361.x

    Article  CAS  PubMed  Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic dry valley soils. Nat Rev Microbiol 8:129–138

    Article  CAS  PubMed  Google Scholar 

  • Certini G, Campbell CD, Edwards AC (2004) Rock fragments in soil support a different microbial community from the fine earth. Soil Biol Biochem 36:1119–1128. https://doi.org/10.1016/j.soilbio.2004.02.022

    Article  CAS  Google Scholar 

  • Chan Y, Van Nostrand JD, Zhou J, pointing sb, farrell rl (2013) functional ecology of an Antarctic dry valley. Proc Natl Acad Sci U S A 110:8990–8995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheeke TC, Coleman DC, Wall DH (2013) Microbial ecology in sustainable agroecosystems. CRC Press, Boca Raton, FL

    Google Scholar 

  • Cowan DA (2014) Microbiology of Antarctic soils. Springer, Berlin; Heidelberg, Germany, p 328

    Google Scholar 

  • Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW (2014) Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol 5:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowan DA, Sohm JA, Makhalanyane TP, Capone DG, Green TGA, Cary SC, Tuffin IM (2011) Hypolithic communities: important nitrogen sources in Antarctic desert soils. Environ Microbiol Rep 3:581–586

    Article  CAS  PubMed  Google Scholar 

  • Coyne KJ, Parker AE, Lee CK, Sohm JA, Kalmbach A, Gunderson T, León-Zayas R, Capone DG, Carpenter EJ, Cary SC (2020) The distribution and relative ecological roles of autotrophic and heterotrophic diazotrophs in the McMurdo dry valleys, Antarctica. FEMS Microbiol Ecol 96:fiaa010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane SL, van Dorst J, Hose GC, King CK, Ferrari BC (2018) Microfluidic qPCR enables high throughput quantification of microbial functional genes but requires strict curation of primers. Front Environ Sci 6:145

    Article  Google Scholar 

  • Dang H, Chen CA (2017) Ecological energetic perspectives on responses of nitrogen-transforming chemolithoautotrophic microbiota to changes in the marine environment. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01246

  • Dávila-Ramos S, Castelán-Sánchez HG, Martínez-ávila L, Sánchez-Carbente MDR, Peralta R, Hernández-Mendoza A, Dobson ADW, Gonzalez RA, Pastor N, Batista-García RA (2019) A review on viral metagenomics in extreme environments. Front Microbiol 10:2403

    Article  PubMed  PubMed Central  Google Scholar 

  • de Scally SZ, Makhalanyane TP, Frossard A, Hogg ID, Cowan DA (2016) Antarctic microbial communities are functionally redundant, adapted and resistant to short term temperature perturbations. Soil Biol Biochem 103:160–170

    Article  CAS  Google Scholar 

  • Elliott ET, Anderson RV, Coleman DC, Cole CV (1980) Habitable pore space and microbial trophic interactions. Oikos 35:327–335

    Article  Google Scholar 

  • Falkowski PG, Godfrey LV (2008) Electrons, life and the evolution of Earth’s oxygen cycle. Philos Trans R Soc Lond Ser B Biol Sci 363:2705–2716

    Article  CAS  Google Scholar 

  • Fernández-Valiente E, Quesada A, Howard-Williams C, Hawes I (2001) N2-fixation in cyanobacterial mats from ponds on the McMurdo ice shelf, Antarctica. Microb Ecol 42:338–349

    Article  PubMed  Google Scholar 

  • Ferrari BC, Bissett A, Snape I, van Dorst J, Palmer AS, Ji M, Siciliano SD, Stark JS, Winsley T, Brown MV (2016) Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems. Environ Microbiol 18:1834–1849

    Article  PubMed  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. https://doi.org/10.1890/05-1839

    Article  PubMed  Google Scholar 

  • Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746

    Article  CAS  PubMed  Google Scholar 

  • Freney JR, Randall PJ, Smith JWB, Hodgkin J, Harrington KJ, Morton TC (2000) Slow release sources of acetylene to inhibit nitrification in soil. Nutr Cycl Agroecosyst 56:241–251

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Garrett SD (1951) Ecological groups of soil fungi: a survey of substrate relationships. New Phytol 50:149–166

    Article  Google Scholar 

  • Garrido-Benavent I, Pérez-Ortega S, Durán J, Ascaso C, Pointing SB, Rodríguez-Cielos R, Navarro F, de los Ríos A (2020) Differential colonization and succession of microbial communities in rock and soil substrates on a maritime Antarctic Glacier Forefield. Front Microbiol 11:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Godfrey LV, Falkowski PG (2009) The cycling and redox state of nitrogen in the Archaean Ocean. Nat Geosci 2:725–729

    Article  CAS  Google Scholar 

  • Grundmann GL, Normand P (2000) Microscale diversity of the genus Nitrobacter in soil on the basis of analysis of genes encoding rRNA. Appl Environ Microbiol 66:4543–4546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506

    Article  CAS  PubMed  Google Scholar 

  • Harris RF, Chesters G, Allen ON (1966) Dynamics of soil aggregation. Adv Agron 18:107–169

    Article  CAS  Google Scholar 

  • Hart SC, Stark JM, Davidson EA, Firestone MK (1994) Nitrogen mineralization, immobilization, and nitrification. In: Weaver RW, Angle JS, Bottomley PJ, Bezdicek DF, Smith MS, Tabatabai MA, Wollum AG (eds) Methods of soil analysis, part 2—microbiological and biochemical properties. Soil Science Society of America, Madison, WI, pp 985–1018

    Google Scholar 

  • Hattori T, Hattori R (1976) The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microorganisms. Crit Rev Microbiol 4:423–460. https://doi.org/10.3109/10408417609102305

    Article  CAS  Google Scholar 

  • Hayashi K, Tanabe Y, Fujitake N, Kida M, Wang Y, Hayatsu M, Kudoh S (2020) Ammonia oxidation potentials and ammonia oxidizers of lichen–moss vegetated soils at two ice-free areas in East Antarctica. Microbes Environ 35:2–6

    Article  Google Scholar 

  • Hoshino T, Xiao N, Tkachenko OB (2009) Cold adaptation in the phytopathogenic fungi causing snow molds. Mycoscience 50:26–38

    Article  Google Scholar 

  • Howard-Williams C, Hawes I (2007) Ecological processes in Antarctic inland waters: interactions between physical processes and the nitrogen cycle. Antarct Sci 19:205–217

    Article  Google Scholar 

  • Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20

    Article  CAS  Google Scholar 

  • https://www.britannica.com/science/nitrogen-cycle n.d.

    Google Scholar 

  • https://www.cbsetuts.com/neet-biology-notes-mineral-nutrition-nitrogen-cycle n.d.

    Google Scholar 

  • https://www.sciencelearn.org.nz/resources/960-the-nitrogen-cycle n.d.

    Google Scholar 

  • Hutchins PR, Miller SR (2017) Genomics of variation in nitrogen fixation activity in a population of the thermophilic cyanobacterium Mastigocladus laminosus. ISME J 11:78–86

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp 22:415–427

    Article  Google Scholar 

  • Insam H (2001) Developments in soil microbiology since the mid-1960s. Geoderma 100:389–402. https://doi.org/10.1007/s00374-010-0442-3

    Article  CAS  Google Scholar 

  • Jetten MSM (2001) New pathways for ammonia conversion in soil and aquatic systems. Plant Soil 230:9–19

    Article  CAS  Google Scholar 

  • Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, Montgomery K, Lines T, Beardall J, Van Dorst J (2017) Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552:400–403

    Article  CAS  PubMed  Google Scholar 

  • Jobba’gy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    Article  Google Scholar 

  • Johnson PTJ (2010) Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecol Appl 20:16–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung J, Yeom J, Kim J, Han J, Lim HS, Park H, Hyun S, Park W (2011) Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Res Microbiol 162:1018–1026

    Article  CAS  PubMed  Google Scholar 

  • Kartal BK, Keltjens JT, Jetten MSM (2011) Metabolism and genomics of anammox bacteria. In: Ward BB, Arp DJ, Klotz MG (eds) Nitrification. American Society for Microbiology Press, Washington, DC, pp 181–200

    Google Scholar 

  • Kaviya N, Upadhayay VK, Singh J, Khan A, Panwar M, Singh AV (2019) Role of microorganisms in soil genesis and functions. In: Mycorrhizosphere and Pedogenesis, pp 25–52

    Google Scholar 

  • Kingsland SE (1991) Defining ecology as a science. In: Real LA, Brown JH (eds) Foundations of ecology: classic papers with commentaries. University of Chicago Press, Chicago

    Google Scholar 

  • Kizewski FR, Kaye JP, Martínez CE (2019) Nitrate transformation and immobilization in particulate organic matter incubations: influence of redox, iron and (a)biotic conditions. PLoS One 14(7):e0218752. https://doi.org/10.1371/journal.pone.0218752

  • Komárek J, Genuário DB, Fiore MF, Elster J (2015) Heterocytous cyanobacteria of the ulu peninsula, James Ross island, Antarctica. Polar Biol 38:475–492

    Article  Google Scholar 

  • Kuramae EE, Yergeau E, Wong LC, Pijl AS, van Veen JA, Kowalchuk GA (2012) Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol 79:12–24

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman C, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, Jorgensen BB, Jetten SM (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci U S A 102:6478–6483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L€ohnis F (1913) Vorlesungen uber Landwortschaftliche Bacterologia. Borntraeger, Berlin

    Google Scholar 

  • L€onn A, Ga’rdonyi M, van Zyl W, Hahn-Ha¨gerdal B, Otero RC (2002) Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis gene cloning and protein characterization. Eur J Biochem 269:157–163

    Article  PubMed  Google Scholar 

  • Lacap-Bugler DC, Lee KK, Archer S, Gillman LN, Lau M, Leuzinger S, Lee CK, Maki T, McKay CP, Perrott JK (2017) Global diversity of desert Hypolithic cyanobacteria. Front Microbiol 8:867

    Article  PubMed  PubMed Central  Google Scholar 

  • Latysheva N, Junker VL, Palmer WJ, Codd GA (2012) Barker, D. the evolution of nitrogen fixation in cyanobacteria. Bioinformatics 28:603–606

    Article  CAS  PubMed  Google Scholar 

  • Lipson DA (2007) Relationship between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microb Ecol 59:418–427. https://doi.org/10.1111/j.1574-6941.2006.00240.x

    Article  CAS  Google Scholar 

  • Loper JE, Hassan KA (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interaction. PLoS Genet e1002784:8

    Google Scholar 

  • Lowrance RR, Todd RL, Fail J, Hendrickson O, Leonard R, Asmussen L (1984) Riparian forests as nutrient filters in agricultural watersheds. Bioscience 34:374–377

    Article  Google Scholar 

  • Magalhães C, Machado A, Bordalo AA (2009) Temporal variability of relative abundance of ammonia oxidizing bacteria vs. archaea in the sandy at of the Douro River estuary, Portugal. Aquat Microb Ecol 56:13–23

    Article  Google Scholar 

  • Magalhães C, Machado A, Frank-Fahle B, Lee CK, Cary CS (2014) The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic dry valleys. Front Microbiol 5:515

    Article  PubMed  PubMed Central  Google Scholar 

  • Makhalanyane TP, Valverde A, Lacap DC, Pointing SB, Tuffin MI, Cowan DA (2013) Evidence of species recruitment and development of hot desert hypolithic communities. Environ Microbiol Rep 5:219–224

    Article  PubMed  Google Scholar 

  • Makhalanyane TP, Valverde A, Velázquez D, Gunnigle E, Van Goethem MW, Quesada A, Cowan DA (2015) Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodivers Conserv 24:819–840

    Article  Google Scholar 

  • McCaig AE, Phillips CJ, Stephen JR, Kowalchuk GA, Harvey SM, Herbert RA, Embley TM, Prosser JI (1999) Nitrogen cycling and community structure of proteobacterial beta-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl Environ Microbiol 65:213–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–184

    Article  PubMed  Google Scholar 

  • McGuire KL, Treseder KK (2010) Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–535

    Article  CAS  Google Scholar 

  • Mitchell CE (2003) Trophic control of grassland production and biomass by pathogens. Ecol Lett 6:147–155. https://doi.org/10.1046/j.1461-0248.2003.00408.x

    Article  Google Scholar 

  • Mitsch WJ, Day JW, Gilliam JW, Groffman PM, Hey DL, Randall GW, Wang N (2001) Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River basin: strategies to counter a persistent ecological problem. Bioscience 51:373–388

    Article  Google Scholar 

  • Monteiro M, Baptista MS, Séneca J, Torgo L, Lee CK, Cary SC, Magalhães C (2020) Understanding the response of nitrifying communities to disturbance in the McMurdo dry valleys, Antarctica. Microorganisms 8:404

    Article  CAS  PubMed Central  Google Scholar 

  • Moore J, de Ruiter PC (2012) Energetic food webs. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184

    Article  CAS  Google Scholar 

  • Niederberger T, Sohm J, Tirindelli J, Gunderson T, Capone D, Carpenter E, Cary S (2012) Diverse and highly active diazotrophic assemblages inhabit ephermally wetted soils of the Antarctic dry valleys. FEMS Microbiol Ecol 82:376–390

    Article  CAS  PubMed  Google Scholar 

  • O’Malley MA (2007) The nineteenth century roots of ‘everything is everywhere’. Nat Rev Microbiol 5:647–651

    Article  PubMed  CAS  Google Scholar 

  • Pankhurst CE (1997) Biodiversity of soil organisms as an indicator of soil health. In: Pankhurst C, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Oxfordshire, pp 297–324

    Google Scholar 

  • Papale M, Conte A, Mikkonen A, Michaud L, La Ferla R, Azzaro M, Caruso G, Paranhos R, Cabral Anderson S, Maimone G (2018) Prokaryotic assemblages within permafrost active layer at Edmonson point (northern Victoria land, Antarctica). Soil Biol Biochem 123:165–179

    Article  CAS  Google Scholar 

  • Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci U S A 106:19964–19969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan A, Baisakh B, Mishra BB (2014) Plant growth characteristics of bacteria isolated from rhizosphere region of Santalum album. J Pure Appl Microbiol 8:4775–4781

    Google Scholar 

  • Rabalais NN, Turner ER, Scavia D (2002) Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. Bioscience 52:129–152

    Article  Google Scholar 

  • Rao S, Chan Y, Lacap DC, Hyde KD, Pointing SB, Farrell RL (2012) Low-diversity fungal assemblage in an Antarctic dry valleys soil. Polar Biol 35:567–574

    Article  Google Scholar 

  • Richter I, Herbold CW, Lee CK, McDonald IR, Barrett JE, Cary SC (2014) Influence of soil properties on archaeal diversity and distribution in the McMurdo dry valleys, Antarctica. FEMS Microbiol Ecol 89:347–359

    Article  CAS  PubMed  Google Scholar 

  • Robertson GP, Tiedje JM (1987) Nitrous oxide sources in aerobic soils: nitrification, denitrification, and other biological processes. Soil Biol Biochem 19:187–193

    Article  CAS  Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125

    Article  Google Scholar 

  • Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P (2019) Systems biology of plant-microbiome interactions. Mol Plant 12:804–821

    Article  CAS  PubMed  Google Scholar 

  • Rudakov KI (1951) Mikroorganizmy i struktura pochvy (microorganisms and soil structure). SeFkhozgiz, Moscow

    Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JBH, Matulich KL, Schmidt TM, Handelsman J (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol. https://doi.org/10.3389/fmicb.2012.00417

  • Silver WL, Herman DJ, Firestone MK (2001) Dissimilatory nitrate reduction to ammonium in upland tropical forest soils. Ecology 82:2410–2416

    Article  Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114:1–38

    Article  CAS  PubMed  Google Scholar 

  • Stephan A, Meyer AH, Schmid B (2000) Plant diversity affects culturable soil bacteria in experimental grassland communities. J Ecol 88:988–999

    Article  Google Scholar 

  • Stephen JR, Kowalchuk GA, Bruns MAV, McCaig AE, Phillips CJ, Embley TM, Prosser JI (1998) Analysis of β-subgroup proteobacterial ammonia oxidizer populations in soil by denaturating gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64:2958–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephen JR, McCaig AE, Smith Z, Prosser JI, Embley TM (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to b-subgroup ammonia-oxidizing bacteria. Appl Environ Microbiol 62:4147–4154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strous M (2011) Beyond denitrification: alternative routes to dinitrogen. Nitrogen cycling in bacteria: molecular analysis. Caister Academic Press, Norfolk, UK

    Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2005) Principles and applications of soil microbiology, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    Article  CAS  PubMed  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Tilman D (1987) Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol Monogr 57:189–214

    Article  Google Scholar 

  • Tolar BB, Ross MJ, Wallsgrove NJ, Liu Q, Aluwihare LI, Popp BN (2016) Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters. ISME J 10:2605–2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–301. https://doi.org/10.1111/j.1461-0248.2007.01139.x

    Article  PubMed  Google Scholar 

  • Van Dorst J, Benaud N, Ferrari B (2017) New insights into the microbial diversity of polar desert soils: a biotechnological perspective. In: Microbial ecology of extreme environments. Springer, Cham, Switzerland, pp 169–183

    Chapter  Google Scholar 

  • Van Goethem MW, Cowan DA (2019) Role of cyanobacteria in the ecology of polar environments. In: Castro-Sowinski S (ed) The ecological role of micro-organisms in the Antarctic environment. Springer Polar Sciences, Cham, Switzerland, pp 3–23

    Google Scholar 

  • Veldkamp E, Becker A, Schwendenmann L, Clark DA, Schulte-Bisping H (2003) Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest. Glob Chang Biol 9:1171–1184. https://doi.org/10.1046/j.1365-2486.2003.00656.x

    Article  Google Scholar 

  • Vero S, Garmendia G, Martínez-Silveira A, Cavello I, Wisniewski M (2019) Yeast activities involved in carbon and nitrogen cycles in Antarctica. In: Castro-Sowinski S (ed) The ecological role of micro-organisms in the Antarctic environment. Springer, Cham, Switzerland, pp 45–64

    Google Scholar 

  • Vishniac HS (2006) Yeast biodiversity in the Antarctic. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin; Heidelberg, Germany, pp 419–440

    Google Scholar 

  • Vitousek PM (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Voytek MA, Priscu JC, Ward BB (1999) The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica. Hydrobiologia 401:113–130

    Article  CAS  Google Scholar 

  • Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, Watson RN, Ghani A (1999) Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol Monogr 69:535–568. https://doi.org/10.1890/0012-9615(1999)069[0535:PRIPGV]2.0.CO;2

    Article  Google Scholar 

  • Wei STS, Higgins CM, Adriaenssens EM, Cowan DA (2015) Pointing, S.B. genetic signatures indicate widespread antibiotic resistance and phage infection in microbial communities of the McMurdo dry valleys, East Antarctica. Polar Biol 38:919–925

    Article  Google Scholar 

  • Wei STS, Lacap-Bugler DC, Lau MCY, Caruso T, Rao S, de los Rios A, Archer SK, Chiu JMY, Higgins C, Van Nostrand JD (2016) Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo dry valleys, Antarctica. Front Microbiol 7:1642

    Article  PubMed  PubMed Central  Google Scholar 

  • Wixon DL, Balser TC (2009) Investigating biological control over soil carbon temperature sensitivity. Glob Chang Biol 15(12):2803–3065. https://doi.org/10.1111/j.1365-2486.2009.01946.x

    Article  Google Scholar 

  • Yergeau E, Hogues H, Whyte LG, Greer CW (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J 4:1206–1214

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Kang S, He Z, Zhou J, Kowalchuk GA (2007) Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J 1:163–179

    Article  CAS  PubMed  Google Scholar 

  • Zablocki O, van Zyl L, Adriaenssens EM, Rubagotti E, Tuffin M, Cary SC, Cowan D (2014) High-level diversity of tailed phages, eukaryote-associated viruses, and virophage-like elements in the metaviromes of Antarctic soils. Appl Environ Microbiol 80:6879–6887

    Article  CAS  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smriti Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, S. et al. (2021). Ecological Perspectives on Soil Microbial Community Involved in Nitrogen Cycling. In: Cruz, C., Vishwakarma, K., Choudhary, D.K., Varma, A. (eds) Soil Nitrogen Ecology. Soil Biology, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-030-71206-8_3

Download citation

Publish with us

Policies and ethics