Skip to main content

A2PF: An Automatic Protein Production Framework

  • 1218 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1351)

Abstract

Proteins are vital molecules that play many important roles in the human body; they contribute to tissue growth and maintenance, catalysis of organic reactions, communication between cells, tissues and organs and help improve immune health. Therefore one of the most important and frequently studied issues in biological and medical research is understanding the function of proteins. A thorough understanding of a protein’s function and activity requires determining its structures. In this paper, we propose an Automatic Protein Production Framework, which aims to completely determine the different structures in order to construct three-dimensional physical proteins and provide all information that will contribute to the study of the functions and activities of the proteins. The proposed framework is based on computational methods by combining three bioinformatics methods (i.e. comparative modeling, fold recognition, and ab initio prediction). We also present a software application that uses our framework and an experiment to illustrate our proposed Automatic Protein Production Framework, using the model application.

Keywords

  • Immune health
  • Protein functions
  • Protein synthesis
  • 3D Proteins
  • Computational methods
  • Framework
  • Software application.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-71187-0_8
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-71187-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Audet, M., Villers, K., Velasquez, J., Chu, M., Hanson, C., Stevens, R.C.: Small-scale approach for precrystallization screening in GPCR x-ray crystallography. Nat. Protoc. 15(1), 144–160 (2020)

    CrossRef  Google Scholar 

  2. Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., Schwede, T.: Modeling protein quaternary structure of homo-and hetero-oligomers beyond binary interactions by homology. Sci. Rep. 7(1), 1–15 (2017)

    CrossRef  Google Scholar 

  3. Brito, J.A., Archer, M.: X-ray crystallography. In: Practical Approaches to Biological Inorganic Chemistry, pp. 217–255. Elsevier (2013)

    Google Scholar 

  4. Chou, P.Y.: Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. Relat. Areas Mol. Biol. 47, 45–148 (1978)

    Google Scholar 

  5. Chou, P.Y., Fasman, G.D.: Prediction of protein conformation. Biochemistry 13(2), 222–245 (1974)

    CrossRef  Google Scholar 

  6. Chou, P.Y., Fasman, G.D.: Empirical predictions of protein conformation. Annu. Rev. Biochem. 47(1), 251–276 (1978)

    CrossRef  Google Scholar 

  7. Degtjarik, O., Demo, G., Wimmerova, M., Smatanova, I.K.: X-ray crystallography. In: Plant Structural Biology: Hormonal Regulations, pp. 203–221. Springer (2018)

    Google Scholar 

  8. Dehghani, T., Naghibzadeh, M., Eghdami, M.: BetaDL: a protein beta-sheet predictor utilizing a deep learning model and independent set solution. Comput. Biol. Med. 104, 241–249 (2019)

    CrossRef  Google Scholar 

  9. Ghouzam, Y., Postic, G., Guerin, P.E., De Brevern, A.G., Gelly, J.C.: Orion: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles. Sci. Rep. 6(1), 1–10 (2016)

    CrossRef  Google Scholar 

  10. Goodsell, D.S., Dutta, S., Zardecki, C., Voigt, M., Berman, H.M., Burley, S.K.: The rcsb pdb “molecule of the month": inspiring a molecular view of biology. PLoS Biol. 13(5), (2015)

    Google Scholar 

  11. Haynie, D.T., Xue, B.: Superdomains in the protein structure hierarchy: the case of PTP-C2. Protein Sci. 24(5), 874–882 (2015)

    CrossRef  Google Scholar 

  12. Ibrahim, W., Abadeh, M.S.: Protein fold recognition using deep kernelized extreme learning machine and linear discriminant analysis. Neural Comput. Appl. 31(8), 4201–4214 (2019)

    CrossRef  Google Scholar 

  13. Ilari, A., Savino, C.: Protein structure determination by x-ray crystallography. In: Bioinformatics, pp. 63–87. Springer (2008)

    Google Scholar 

  14. Jo, T., Hou, J., Eickholt, J., Cheng, J.: Improving protein fold recognition by deep learning networks. Sci. Rep. 5, 17573 (2015)

    CrossRef  Google Scholar 

  15. John, B., Sali, A.: Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res. 31(14), 3982–3992 (2003)

    CrossRef  Google Scholar 

  16. Kelley, L.A.: Fold recognition. In: From Protein Structure to Function with Bioinformatics, pp. 27–55. Springer (2009)

    Google Scholar 

  17. Kermani, M.H., Boufaida, Z.: A modeling of a multi-agent system for the protein synthesis. In: 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA), pp. 1–7. IEEE (2015)

    Google Scholar 

  18. Kermani, M.H., Guessoum, Z., Boufaida, Z.: A two-step methodology for dynamic construction of a protein ontology. IAENG Int. J. Comput. Sci. 46(1), (2019)

    Google Scholar 

  19. Khalatbari, L., Kangavari, M.R., Hosseini, S., Yin, H., Cheung, N.M.: MCP: a multi-component learning machine to predict protein secondary structure. Comput. Biol. Med. 110, 144–155 (2019)

    CrossRef  Google Scholar 

  20. Kumari, I., Sandhu, P., Ahmed, M., Akhter, Y.: Molecular dynamics simulations, challenges and opportunities: a biologist’s prospective. Curr. Protein Pept. Sci. 18(11), 1163–1179 (2017)

    CrossRef  Google Scholar 

  21. Lam, S.D., Das, S., Sillitoe, I., Orengo, C.: An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences. Acta Crystallographica Section D: Struct. Biol. 73(8), 628–640 (2017)

    CrossRef  Google Scholar 

  22. Langer, G., Cohen, S.X., Lamzin, V.S., Perrakis, A.: Automated macromolecular model building for x-ray crystallography using arp/warp version 7. Nat. Protoc. 3(7), 1171 (2008)

    CrossRef  Google Scholar 

  23. Lee, J., Freddolino, P.L., Zhang, Y.: Ab initio protein structure prediction. In: From Protein Structure to Function with Bioinformatics, pp. 3–35. Springer (2017)

    Google Scholar 

  24. Liu, B., Li, C.C., Yan, K.: Deepsvm-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks. Briefings in bioinformatics (2019)

    Google Scholar 

  25. Ma, T., Kuang, P., Tian, W.: An improved recurrent neural networks for 3D object reconstruction. Appl. Intell. 50(3), 905–923 (2020)

    CrossRef  Google Scholar 

  26. Meyer, S.C.: 3d printing of protein models in an undergraduate laboratory: leucine zippers. J. Chem. Educ. 92(12), 2120–2125 (2015)

    CrossRef  Google Scholar 

  27. Micsonai, A., Wien, F., Bulyáki, É., Kun, J., Moussong, É., Lee, Y.H., Goto, Y., Réfrégiers, M., Kardos, J.: Bestsel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 46(W1), W315–W322 (2018)

    CrossRef  Google Scholar 

  28. Ovchinnikov, S., Park, H., Varghese, N., Huang, P.S., Pavlopoulos, G.A., Kim, D.E., Kamisetty, H., Kyrpides, N.C., Baker, D.: Protein structure determination using metagenome sequence data. Science 355(6322), 294–298 (2017)

    CrossRef  Google Scholar 

  29. Qiao, S., Yan, B., Li, J.: Ensemble learning for protein multiplex subcellular localization prediction based on weighted KNN with different features. Appl. Intell. 48(7), 1813–1824 (2018)

    CrossRef  Google Scholar 

  30. Rose, P.W., Prlić, A., Altunkaya, A., Bi, C., Bradley, A.R., Christie, C.H., Costanzo, L.D., Duarte, J.M., Dutta, S., Feng, Z., et al.: The RCSB protein data bank: integrative view of protein, gene and 3d structural information. Nucleic acids research, p. gkw1000 (2016)

    Google Scholar 

  31. Spencer, M., Eickholt, J., Cheng, J.: A deep learning network approach to AB initio protein secondary structure prediction. IEEE/ACM Trans. Comput. Biol. Bioinf. 12(1), 103–112 (2014)

    CrossRef  Google Scholar 

  32. Studer, G., Tauriello, G., Bienert, S., Waterhouse, A.M., Bertoni, M., Bordoli, L., Schwede, T., Lepore, R.: Modeling of protein tertiary and quaternary structures based on evolutionary information. In: Computational Methods in Protein Evolution, pp. 301–316. Springer (2019)

    Google Scholar 

  33. Xu, D., Jaroszewski, L., Li, Z., Godzik, A.: Aida: AB initio domain assembly for automated multi-domain protein structure prediction and domain-domain interaction prediction. Bioinformatics 31(13), 2098–2105 (2015)

    CrossRef  Google Scholar 

  34. Yang, M., Derbyshire, M.K., Yamashita, R.A., Marchler-Bauer, A.: Ncbi’s conserved domain database and tools for protein domain analysis. Current Protocols Bioinform. 69(1), 874–882 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hachem Kermani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kermani, M.H., Boufaida, Z. (2021). A2PF: An Automatic Protein Production Framework. In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A. (eds) Intelligent Systems Design and Applications. ISDA 2020. Advances in Intelligent Systems and Computing, vol 1351. Springer, Cham. https://doi.org/10.1007/978-3-030-71187-0_8

Download citation