Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford University Press (1995)
Google Scholar
Campolucci, P., Capperelli, F., Guarnieri, S., Piazza, F., Uncini, A.: Neural networks with adaptive spline activation function. In: Proceedings of 8th Mediterranean Electrotechnical Conference on Industrial Applications in Power Systems, Computer Science and Telecommunications (MELECON 1996), vol. 3, pp. 1442–1445. IEEE (1996)
Google Scholar
Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678 (2016)
Chen, C.T., Chang, W.D.: A feedforward neural network with function shape autotuning. Neural Netw. 9(4), 627–641 (1996)
CrossRef
Google Scholar
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)
MathSciNet
CrossRef
Google Scholar
Fisher, R.A.: Xv.—the correlation between relatives on the supposition of mendelian inheritance. Earth Environ. Sci. Trans. Roy. Soc. Edinburgh 52(2), 399–433 (1919)
Google Scholar
Godfrey, L.B., Gashler, M.S.: A continuum among logarithmic, linear, and exponential functions, and its potential to improve generalization in neural networks. In: 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), vol. 1, pp. 481–486. IEEE (2015)
Google Scholar
Guo, P., Cheng, W., Wang, Y.: Hybrid evolutionary algorithm with extreme machine learning fitness function evaluation for two-stage capacitated facility location problems. Expert Syst. Appl. 71, 57–68 (2017)
CrossRef
Google Scholar
Haykin, S.: Neural Networks - A Comprehensive Foundation, 2nd edn. Prentice Hall (1998)
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
Google Scholar
Huang, G., Huang, G.B., Song, S., You, K.: Trends in extreme learning machines: a review. Neural Networks 61(Supplement C), 32 – 48 (2015)
Google Scholar
Huang, G.B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybern. 2(2), 107–122 (2011)
CrossRef
Google Scholar
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, 2004, vol. 2, pp. 985–990. IEEE (2004)
Google Scholar
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)
CrossRef
Google Scholar
Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 404, 109136 (2020)
Google Scholar
Karlik, B., Olgac, A.V.: Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 1(4), 111–122 (2011)
Google Scholar
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kunc, V., Kléma, J.: On transformative adaptive activation functions in neural networks for gene expression inference. bioRxiv, p. 587287 (2019)
Google Scholar
Lau, M.M., Lim, K.H.: Review of adaptive activation function in deep neural network. In: 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp. 686–690. IEEE (2018)
Google Scholar
Li, D., Chen, X., Becchi, M., Zong, Z.: Evaluating the energy efficiency of deep convolutional neural networks on CPUs and GPUs. In: 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom). pp. 477–484. IEEE (2016)
Google Scholar
Merenda, M., Porcaro, C., Iero, D.: Edge machine learning for ai-enabled IoT devices: a review. Sensors 20(9), 2533 (2020)
CrossRef
Google Scholar
Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Mining 10(1), 36 (2017)
CrossRef
Google Scholar
Piazza, F., Uncini, A., Zenobi, M.: Artificial neural networks with adaptive polynomial activation function (1992)
Google Scholar
Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv preprint arXiv:1710.05941 (2017)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
CrossRef
Google Scholar
Saporetti, C.M., Duarte, G.R., Fonseca, T.L., da Fonseca, L.G., Pereira, E.: Extreme learning machine combined with a differential evolution algorithm for lithology identification. RITA 25(4), 43–56 (2018)
CrossRef
Google Scholar
Scellier, B., Bengio, Y.: Equilibrium propagation: Bridging the gap between energy-based models and backpropagation. Front. Comput. Neurosci. 11, 24 (2017)
CrossRef
Google Scholar
Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green ai. arXiv preprint arXiv:1907.10597 (2019)
Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in nlp. arXiv preprint arXiv:1906.02243 (2019)
Sulistiyo, M.D., Dayawati, R.N., et al.: Evolution strategies for weight optimization of artificial neural network in time series prediction. In: 2013 International Conference on Robotics, Biomimetics, Intelligent Computational Systems, pp. 143–147. IEEE (2013)
Google Scholar
Tezel, G., Özbay, Y.: A new neural network with adaptive activation function for classification of ecg arrhythmias. In: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pp. 1–8. Springer (2007)
Google Scholar
Tukey, J.W.: Exploratory Data Analysis, vol. 2. Reading, MA (1977)
MATH
Google Scholar
Vecci, L., Campolucci, P., Piazza, F., Uncini, A.: Approximation capabilities of adaptive spline neural networks. In: Proceedings of International Conference on Neural Networks (ICNN 1997), vol. 1, pp. 260–265. IEEE (1997)
Google Scholar
Wu, R., Huang, H., Qian, X., Huang, T.: A L-BFGS based learning algorithm for complex-valued feedforward neural networks. Neural Process. Lett. 47(3), 1271–1284 (2018)
CrossRef
Google Scholar
ZahediNasab, R., Mohseni, H.: Neuroevolutionary based convolutional neural network with adaptive activation functions. Neurocomputing 381, 306–313 (2020)
CrossRef
Google Scholar
Zou, W., Yao, F., Zhang, B., Guan, Z.: Back propagation convex extreme learning machine. In: Proceedings of ELM-2016, pp. 259–272. Springer (2018)
Google Scholar