Skip to main content

Investigating Data Distribution for Classification Using PSO with Adversarial Network

  • 1592 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1351)

Abstract

Data distribution plays a key role in the performance of various classification algorithms. Artificial neural network (ANN) has been widely applied in considerable complex tasks because of its excellent universal approximation capability. Although the floating centroids method (FCM) provides an effective and diverse output encoding that removes the fixed centroids constraint, the adaptive mechanism between the FCM-based neural network classifier and the data distribution has not been studied. In this paper, we design an adversarial network to investigate the characteristics of FCM and adopt a particle swarm optimization to evolve the data distribution. Experimental results demonstrated that FCM show the characteristics of diversified centroids, flexible clustering, and insensitivity to data scale, thereby obtaining competitive performance.

Keywords

  • Artificial neural network
  • Classification
  • Data distribution
  • Floating centroids
  • Fixed centroids

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-71187-0_26
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-71187-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Bao, F., Deng, Y., Kong, Y., Ren, Z., Suo, J., Dai, Q.: Learning deep landmarks for imbalanced classification. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 2691–2704 (2020)

    CrossRef  Google Scholar 

  2. Chen, C.L.P., Liu, Z.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 10–24 (2018)

    CrossRef  MathSciNet  Google Scholar 

  3. Ning, O., Zhu, T., Lin, L.: Convolutional neural network trained by joint loss for hyperspectral image classification. IEEE Geoence Remote Sens. Lett. 16(3), 457–461 (2019)

    CrossRef  Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105, January 2012

    Google Scholar 

  5. Wang, L., Yang, B., Chen, Y., Zhang, X., Orchard, J.: Improving neural-network classifiers using nearest neighbor partitioning. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2255–2267 (2017)

    CrossRef  MathSciNet  Google Scholar 

  6. Marek, M., Struski, U., Figueiredo, M.: A classification-based approach to semi-supervised clustering with pairwise constraints. Neural Netw. 127, 193–203 (2020)

    CrossRef  Google Scholar 

  7. Mousavi, S., Zhu, W., Ellsworth, W., Beroza, G.: Unsupervised clustering of seismic signals using deep convolutional autoencoders. IEEE Geoence Remote Sens. Lett. 16(11), 1693–1697 (2019)

    CrossRef  Google Scholar 

  8. Erturul, M.F.: A novel clustering method built on random weight artificial neural networks and differential evolution. Soft. Comput. 24(16), 12067–12078 (2020)

    CrossRef  Google Scholar 

  9. Shao, Z., Zhou, W., Deng, X., Zhang, M., Cheng, Q.: Multilabel remote sensing image retrieval based on fully convolutional network. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 13(1), 318–328 (2020)

    CrossRef  Google Scholar 

  10. Li, P., Han, L., Tao, X., Zhang, X., Grecos, C., Plaza, A.: Hashing nets for hashing: a quantized deep learning to hash framework for remote sensing image retrieval. IEEE Trans. Geoence Remote Sens. 58(10), 7331–7345 (2020)

    CrossRef  Google Scholar 

  11. Wang, L., Yang, B., Chen, Y., Abraham, A., Sun, H., Chen, Z., Wang, H.: Improvement of neural network classifier using floating centroids. Knowl. Inf. Syst. 31(3), 433–454 (2012)

    CrossRef  Google Scholar 

  12. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1735–1742, June 2006

    Google Scholar 

  13. Liu, W., Wen, Y., Yu, Z., Li, M., Raj B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 6738–6746, June 2017

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770–778, June 2016

    Google Scholar 

  15. Lin, M., Cheng, Q., Yan, S.: Network in network. In Proceedings of International Conference on Learning Representations, April 2014

    Google Scholar 

  16. Wang, L., Orchard, J.: Investigating the evolution of a neuroplasticity network for learning. IEEE Trans. Syst. Man Cybern. Syst. 49(10), 2131–2143 (2019)

    CrossRef  Google Scholar 

  17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Google Scholar 

  18. Quentin, M., Fabrice, P., Desideri, J.A.: Stochastic multiple gradient descent algorithm. Eur. J. Oper. Res. 271(3), 808–817 (2018)

    CrossRef  MathSciNet  Google Scholar 

  19. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: International Symposium on Micro Machine and Human Science, pp. 39–43, October 1995

    Google Scholar 

  20. Lin, C.T., Prasad, M., Saxena, A.: An improved polynomial neural network classifier using real-coded genetic algorithm. IEEE Trans. Syst. Man Cybern. Syst. 45(11), 1389–1401 (2015)

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant No. 61872419, No. 61573166, No. 61572230, No. 61873324, No. 81671785, No. 61672262, No. 61903156. Shandong Provincial Natural Science Foundation No. ZR2019MF040, No. ZR2018LF005. Shandong Provincial Key R&D Program under Grant No. 2019GGX101041, No. 2018CXGC0706, No. 2017CXZC1206. Taishan Scholars Program of Shandong Province, China, under Grant No. tsqn201812077.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Fan, J., Wang, L., Yang, B. (2021). Investigating Data Distribution for Classification Using PSO with Adversarial Network. In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A. (eds) Intelligent Systems Design and Applications. ISDA 2020. Advances in Intelligent Systems and Computing, vol 1351. Springer, Cham. https://doi.org/10.1007/978-3-030-71187-0_26

Download citation