Food and Agriculture Organization Corporate Statistical. FAO-STAT (2016). Accessed 18 Oct 2018, https://www.fao.org/faostat/en/#data/QC
Al-Janobi, A., Abdulwahed, A.: Evaluation of field test of harvesting system for picking dates fruits based on robotic arm. In: Proceedings of the First International Conference on Robotics and Associated High-technologies and Equipment for Agriculture. Applications of Automated Systems and Robotics for Crop Protection in Sustainable Precision Agriculture (RHEA-2012), Pisa, Italy, 19–21 September 2012, pp. 183–188. University of Pisa (2012)
Google Scholar
Bac, C.W., van Henten, E.J., Hemming, J., Edan, Y.: Harvesting robots for high-value crops: State-of-the-art review and challenges ahead. J. Field Rob. 31(6), 888–911 (2014)
CrossRef
Google Scholar
Arefi, A., Motlagh, A.M., Mollazade, K., Teimourlou, R.F.: Recognition and localization of ripen tomato based on machine vision. Aust. J. Crop Sci. 5(10), 1144 (2011)
Google Scholar
Alzubaidi, L., Al-Shamma, O., Fadhel, M.A., Arkah, Z.M., Awad, F.H.: A deep convolutional neural network model for multi-class fruits classification. In: International Conference on Intelligent Systems Design and Applications, pp. 90–99. Springer, Cham (2019)
Google Scholar
Hobani, A.I., Thottam, A.M., Ahmed, K.A.: Development of a neural network classifier for date fruit varieties using some physical attributes. King Saud University-Agricultural Research Center (2003)
Google Scholar
Fadel, M.: Date fruits classification using probabilistic neural networks. Agric. Eng. Int. CIGR J. IX, 1–11 (2007)
Google Scholar
Haidar, A., Dong, H., Mavridis, N.: Image-based date fruit classification. In: 2012 IV International Congress on Ultra Modern Telecommunications and Control Systems, pp. 357–363. IEEE (2012)
Google Scholar
Muhammad, G.: Date fruits classification using texture descriptors and shape-size features. Eng. Appl. Artif. Intell. 37, 361–367 (2015)
CrossRef
Google Scholar
Aiadi, O., Kherfi, M.L.: A new method for automatic date fruit classification. Int. J. Comput. Vision Rob. 7(6), 692–711 (2017)
CrossRef
Google Scholar
Hossain, M.S., Muhammad, G., Amin, S.U.: Improving consumer satisfaction in smart cities using edge computing and caching: a case study of date fruits classification. Fut. Gener. Comput. Syst. 88, 333–341 (2018)
CrossRef
Google Scholar
Alzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A.J., Al-Shamma, O., Fadhel, M.A., Zhang, J., Santamaría, J., Duan, Y.: Novel transfer learning approach for medical imaging with limited labeled data. Cancers 13, 1590 (2021). https://doi.org/10.3390/cancers13071590
Alzubaidi, L., Al-Shamma, O., Fadhel, M.A., Farhan, L., Zhang, J., Duan, Y.: Optimizing the performance of breast cancer classification by employing the same domain transfer learning from hybrid deep convolutional neural network model. Electronics 9(3), 445 (2020)
CrossRef
Google Scholar
Hasan, R.I., Yusuf, S.M., Alzubaidi, L.: Review of the state of the art of deep learning for plant diseases: a broad analysis and discussion. Plants 9(10), 1302 (2020)
CrossRef
Google Scholar
Alzubaidi, L., Fadhel, M.A., Al-Shamma, O., Zhang, J., Santamaría, J., Duan, Y., Oleiwi, S.R.: Towards a better understanding of transfer learning for medical imaging: a case study. Appl. Sci. 10(13), 4523 (2020)
CrossRef
Google Scholar
Al-Shamma, O., Fadhel, M.A., Hameed, R.A., Alzubaidi, L., Zhang, J.: Boosting convolutional neural networks performance based on FPGA accelerator. In: International Conference on Intelligent Systems Design and Applications, pp. 509–517. Springer, Cham (2018)
Google Scholar
Fadhel, M.A., Al-Shamma, O., Oleiwi, S.R., Taher, B.H., Alzubaidi, L.: Real-time PCG diagnosis using FPGA. In: International Conference on Intelligent Systems Design and Applications, pp. 518–529. Springer, Cham (2018)
Google Scholar
Altaheri, H., Alsulaiman, M., Muhammad, G.: Date fruit classification for robotic harvesting in a natural environment using deep learning. IEEE Access 7, 117115–117133 (2019)
CrossRef
Google Scholar
Alzubaidi, L., Zhang, J., Humaidi, A.J., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 53 (2021). https://doi.org/10.1186/s40537-021-00444-8
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Google Scholar
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer, Cham (2014)
Google Scholar
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Google Scholar
Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks (2015). arXiv preprint arXiv:1506.02078
Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks (2015). arXiv preprint arXiv:1505.00387
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Google Scholar
Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: Generalizing residual architectures (2016). arXiv preprint arXiv:1603.08029
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Google Scholar