Skip to main content

Spatial Simultaneous Autoregressive Models for Compositional Data: Application to Land Use

  • Chapter
  • First Online:
Advances in Compositional Data Analysis

Abstract

Econometric land use models study determinants of land use shares of different classes: “agriculture”, “forest”, “urban” and “other” for example. Land use shares have a compositional nature as well as an important spatial dimension. We compare two compositional regression models with a spatial autoregressive nature in the framework of land use. We study the impact of the choice of coordinate space and prove that a choice of coordinate representation does not have any impact on the parameters in the simplex as long as we do not impose further restrictions. We discuss parameters interpretation taking into account the non-linear structure as well as the spatial dimension. In order to assess the explanatory variables impact, we compute and interpret the semi-elasticities of the shares with respect to the explanatory variables and the spatial impact summary measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Aitchison, The Statistical Analysis of Compositional Data (Chapman and Hall, London, 1986). Reprinted in 2003 with additional material by the Blackburn Press

    Google Scholar 

  • R.S. Bivand, D.W.S. Wong, Comparing implementations of global and local indicators of spatial association. TEST 27(3), 716–748 (2018)

    Article  MathSciNet  Google Scholar 

  • R. Chakir, A. Lungarska, Agricultural rent in land-use models: comparison of frequently used proxies. Spat. Econ. Anal. 12(2–3), 279–303 (2017)

    Article  Google Scholar 

  • R. Chakir, A.-C. Madignier, Analyse des changements d’occupation des sols en France entre 1992 et 2003. Economie Rurale 296 (2006)

    Google Scholar 

  • J. Chen, X. Zhang, S. Li, Multiple linear regression with compositional response and covariates. J. Appl. Stat. 44(12), 2270–2285 (2017)

    Article  MathSciNet  Google Scholar 

  • A.D. Cliff, J.K. Ord, Spatial Processes (Pion, London, 1981)

    MATH  Google Scholar 

  • P. Filzmoser, K. Hron, M. Templ, Applied Compositional Data Analysis. With Worked Examples in R. Springer Series in Statistics (Springer International Publishing, Springer Nature Switzerland AG, Cham, Switzerland, 2018)

    Google Scholar 

  • J.A. Foley, R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter, F.S. Chapin, M.T. Coe, G.C. Daily, H.K. Gibbs et al., Global consequences of land use. Science 309(5734), 570–574 (2005)

    Article  Google Scholar 

  • J.J. Egozcue, J. Daunis-I-Estadella, V. Pawlowsky-Glahn, K. Hron, P. Filzmoser, Simplicial regression. The normal model. J. Appl. Probab. Stat. 6, 87–108 (2012)

    Google Scholar 

  • M. Goulard, T. Laurent, C. Thomas-Agnan, About predictions in spatial autoregressive models: optimal and almost optimal strategies. Spat. Econ. Anal. 12(2–3), 304–325 (2017)

    Article  Google Scholar 

  • H.H. Kelejian, I.R. Prucha, A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J. R. Estate Financ. Econ. 17(1), 99–121 (1998)

    Article  Google Scholar 

  • H.H. Kelejian, I.R. Prucha, Estimation of simultaneous systems of spatially interrelated cross sectional equations. J. Econ. 118(1–2), 27–50 (2004)

    Article  MathSciNet  Google Scholar 

  • R. Lal, Soil carbon sequestration impacts on global climate change and food security. Science 304(5677), 1623–1627 (2004)

    Article  Google Scholar 

  • T.J. Leininger, A.E. Gelfand, J.M. Allen, J.A. Silander, Spatial regression modeling for compositional data with many zeros. J. Agric. Biol. Environ. Stat. 18(3), 314–334 (2013)

    Article  MathSciNet  Google Scholar 

  • J. LeSage, R.K. Pace, Introduction to Spatial Econometrics (Chapman and Hall/CRC, London, 2009)

    Google Scholar 

  • A. Lungarska, R. Chakir, Climate-induced land use change in France: impacts of agricultural adaptation and climate change mitigation. Ecol. Econ. 147, 134–154 (2018)

    Article  Google Scholar 

  • J.A. Martín-Fernández, C. Barceló-Vidal, V. Pawlowsky-Glahn, Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math. Geol. 35(3), 253–278 (2003)

    Article  Google Scholar 

  • J. Morais, C. Thomas-Agnan, Covariates impacts in compositional models and simplicial derivatives. Austrian J. Stat. (2020)

    Google Scholar 

  • D.K. Munroe, D. Müller, Issues in spatially explicit statistical land-use/cover change (LUCC) models: examples from western Honduras and the central highlands of Vietnam. Land Use Policy 24(3), 521–530 (2007)

    Article  Google Scholar 

  • T.H.A. Nguyen, C. Thomas-Agnan, T. Laurent, A. Ruiz-Gazen, A, A simultaneous spatial autoregressive model for compositional data. Spat. Econ. Anal. (2019). https://www.tse-fr.eu/fr/publications/simultaneous-spatial-autoregressive-model-compositional-data

  • V. Pawlowsky-Glahn, J.J. Egozcue, Exploring compositional data with the CoDa-dendrogram. Austrian J. Stat. 40(1&2), 103–113 (2011)

    Google Scholar 

  • V. Pawlowsky-Glahn, J.J. Egozcue, R. Tolosana-Delgado, Modeling and Analysis of Compositional Data (Wiley, Hoboken, 2015)

    Google Scholar 

  • R.A. Pielke, Land use and climate change. Science 310(5754), 1625–1626 (2005)

    Article  Google Scholar 

  • B. Pirzamanbein, J. Lindström, A. Poska, M.-J. Gaillard, Modelling spatial compositional data: reconstructions of past land cover and uncertainties. Spat. Stat. 24, 14–31 (2018)

    Article  MathSciNet  Google Scholar 

  • G. Shmueli, To explain or to predict? Stat. Sci. 289–310 (2010)

    Google Scholar 

  • C. Thomas-Agnan, T. Laurent, A. Ruiz-Gazen, Covariates impacts in spatial autoregressive models for compositional data. TSE working paper 20-1162 (2020)

    Google Scholar 

  • A. Veldkamp, E.F. Lambin, Predicting land-use change. Agric. Ecosyst. Environ. 85(1), 1–6 (2001)

    Article  Google Scholar 

  • P.H. Verburg, K.-H. Erb, O. Mertz, G. Espindola, Land system science: between global challenges and local realities. Curr. Opin. Environ. Sustain. 5(5), 433–437 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Vera Pawlowsky-Glahn for her valuable contributions to the CODA field. They also thank two anonymous referees and the editors for their helpful comments. Thibault Laurent, Anne Ruiz-Gazen and Christine Thomas-Agnan acknowledge funding from ANR under grant ANR-17-EURE-0010 (Investissements d’Avenir program). Raja Chakir and Anna Lungaska acknowledge the support of the Agence Nationale de la Recherche as part of the “Investments d’Avenir” Programme within STIMUL (Scenarios Towards integrating multi-scale land use tools) flagship project (LabEx BASC; ANR-11- LABX-0034) and Cland Institut de convergence (ANR-16-CONV-0003)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Thomas-Agnan .

Editor information

Editors and Affiliations

6 Appendix

6 Appendix

1.1 6.1 Matrix Product Expression Using Alr Transformation

Let us consider the \(\text {alr}_D\) transformation \(\text {alr}_D(\mathbf {u})= \mathbf {F}_D\ln (\mathbf {u})\) for a vector \(\mathbf {u} \in \mathbf {S}^D\) and with \(\mathbf {F}_D= \left[ \mathbf {I}_{D-1} \, -\mathbf {j}_{D-1}\right] \). The result can be generalized to any \(\text {alr}_m\) transformation.

$$\begin{aligned} \text {alr}_D\left( \mathbf {B} \boxdot \mathbf {u}\right) =\mathbf {F}_D\ln \left( \mathbf {B} \boxdot \mathbf {u}\right) = \mathbf {F}_D\ln \left( \text {ilr}^{-1}_V\left( \mathbf {B}^*_{V} \text {ilr}_V(\mathbf {u})\right) \right) , \end{aligned}$$

where \(\mathbf {V}\mathbf {B}^*_V=\mathbf {B}\mathbf {V}\). Since \(\mathbf {V} \mathbf {V}^T=\mathbf {I}_D -\mathbf {j}_D \mathbf {j}_D^T/D\) and \(\mathbf {F}_D \mathbf {j}_D=\mathbf {0}_D\), we have

$$\begin{aligned} \text {alr}_D\left( \mathbf {B} \boxdot \mathbf {u}\right) =\mathbf {F}_D\ln \left( \mathcal {C}\left( \exp (\mathbf {V}\mathbf {B}^*_V \text {ilr}_V(\mathbf {u})\right) \right) = \mathbf {F}_D \mathbf {V} \mathbf {B}^*_V \text {ilr}_V(\mathbf {u}) = \mathbf {F}_D \mathbf {B} \ln (\mathbf {u}). \end{aligned}$$

1.2 6.2 Writing the Model in Reduced Form in Coordinate Space

Recognizing that the matrix form of the term \(\sum _{m \in S_l^{\mathbf {WY}^*}} \mathbf {R}^*_{ml}\mathbf {W} \mathbf {Y}_{.m}^*\) is \(\mathbf {W}\mathbf {Y}^*\mathbf {R}^*\) , we get easily that the matrix formulation of the model can be written

$$\begin{aligned} \mathbf {Y}^* = \mathbf {W}\mathbf {Y}^*\mathbf {R}^* + \begin{bmatrix} \mathbf {X}_{S_1^{\mathbf {X}}}\pmb {\beta }_{S_1^\mathbf {X}}^*&\ldots&\mathbf {X}_{S_{D-1}^{\mathbf {X}}}\pmb {\beta }^*_{S^\mathbf {X}_{D-1}} \end{bmatrix} + \pmb {\epsilon }^*. \end{aligned}$$

We are going to use the following property: if we have three matrices \(\mathbf {A},\) \(\mathbf {B}\) and \(\mathbf {C}\) such that the number of columns of \(\mathbf {A}\) is equal to the number of rows of \(\mathbf {B}\) and the number of columns of \(\mathbf {B}\) is equal to the number of rows of \(\mathbf {C},\) then

$$\begin{aligned} \text {vec}_c(\mathbf {ABC}) = (\mathbf {C}^T\otimes \mathbf {A})\text {vec}_c(\mathbf {B}). \end{aligned}$$
(23)

Using (23), we get

$$\begin{aligned} \text {vec}_c ( \mathbf {W}\mathbf {Y}^*\mathbf {R}^*)= \left( (\mathbf {R}^*)^T\otimes \mathbf {W}\right) \text {vec}_c(\mathbf {Y}^*). \end{aligned}$$

Therefore the c-vectorization of the whole model is

$$\begin{aligned} \text {vec}_c \mathbf {Y}^* = \left( (\mathbf {R}^*)^T\otimes \mathbf {W}\right) \text {vec}_c(\mathbf {Y}^*) + \begin{bmatrix} \mathbf {X_{S_1}} \pmb {\beta }_1^*\\ . \\ \mathbf {X_{S_{D-1}}}\pmb {\beta }_{D-1}^* \end{bmatrix}+\text {vec}_c\pmb {\epsilon }^* \end{aligned}$$

and the reduced form of the model in vectorized form is

$$\begin{aligned} \text {vec}_c \mathbf {Y}^* = (\mathbf {I}_{n(D-1)} - ((\mathbf {R}^*)^T\otimes \mathbf {W}))^{-1}\begin{bmatrix} \mathbf {X_{S_1}} \pmb {\beta }_1^*\\ . \\ \mathbf {X_{S_{D-1}}}\pmb {\beta }_{D-1}^* \end{bmatrix} +\text {vec}_c\pmb {\epsilon }^*. \end{aligned}$$

1.3 6.3 Lemma Used in the Proof of Theorem 1

Lemma 1

Let \(\mathbf {j}_D\) (resp. \(\pmb {0}_D\)) denote the D-dimensional column vector of ones (resp. zeros) and \(\mathbf {I}_D\) be the \(D \times D\) identity matrix. Let \(\mathbf {K}=\begin{bmatrix} \mathbf {I}_{D-1} - \mathbf {j}_{D-1}\mathbf {j}_{D-1}^T/D\\ -\mathbf {j}_{D-1}^T/D \end{bmatrix}\) a \(D \times (D-1)\) matrix and \(\mathbf {F}= \left[ \mathbf {I}_{D-1} \, -\mathbf {j}_{D-1}\right] \)   a   \((D-1) \times D\) matrix. Let \(\mathbf {B}\) be a \(D \times D\) matrix such that \(\mathbf {B} \mathbf {j}_D = \pmb {0}_D\) and \(\mathbf {B}^T\mathbf {j}_D= \pmb {0}_D\) and \(\mathbf {B}^*\) be a \((D-1) \times (D-1)\) matrix. We have that \(\mathbf {F}\mathbf {B}=\mathbf {B}^*\mathbf {F}\) is equivalent to \(\mathbf {B}=\mathbf {K} \mathbf {B}^* \mathbf {F}\).

We have

$$ \mathbf {K}= \begin{bmatrix} 1-\frac{1}{D} &{} -\frac{1}{D} &{}-\frac{1}{D} &{}\ldots &{} -\frac{1}{D} \\ -\frac{1}{D} &{} 1-\frac{1}{D} &{}-\frac{1}{D} &{}\ldots &{}-\frac{1}{D} \\ -\frac{1}{D} &{}-\frac{1}{D} &{} 1-\frac{1}{D} &{}\ldots &{}-\frac{1}{D} \\ \vdots &{}\vdots &{}\vdots &{}\ddots &{}\vdots \\ -\frac{1}{D} &{}-\frac{1}{D} &{} \frac{1}{D} &{}\ldots &{} 1-\frac{1}{D} \\ -\frac{1}{D} &{}-\frac{1}{D} &{} -\frac{1}{D} &{}\ldots &{}-\frac{1}{D} \end{bmatrix} \;\; \text { and } \;\; \mathbf {F} = \begin{bmatrix} 1 &{} 0 &{} 0 &{}\ldots &{}0 &{}-1 \\ 0 &{} 1 &{} 0 &{} \ldots &{} 0 &{}-1 \\ 0 &{} 0 &{} 1 &{} \ldots &{} 0 &{}-1 \\ \vdots &{} \vdots &{} &{}\ddots &{}0 &{} -1\\ 0 &{} 0 &{} 0 &{} &{} 1 &{} -1. \end{bmatrix} $$

Let \(\mathbf {B}\) be a \(D \times D\) matrix such that \(\mathbf {B} \mathbf {j}_D = \pmb {0}_D\) and \(\mathbf {B}^T\mathbf {j}_D= \pmb {0}_D\) and \(\mathbf {B}^*\) be a \((D-1) \times (D-1)\) matrix. First, let us prove that if \(\mathbf {B}=\mathbf {K} \mathbf {B}^* \mathbf {F}\), then \(\mathbf {F}\mathbf {B}=\mathbf {B}^*\mathbf {F}\). It is easy to show that \(\mathbf {F}\mathbf {K}= \mathbf {I}_{D-1}\). Thus, if \(\mathbf {B} = \mathbf {KB}^*\mathbf {F}\),

$$\begin{aligned} \mathbf {FB} = \mathbf {FKB}^*\mathbf {F}= \mathbf {I}_{D-1}\mathbf {B}^*\mathbf {F} = \mathbf {B}^*\mathbf {F}. \end{aligned}$$

Let us now prove the converse. We have \(\mathbf {B} \mathbf {j}_D= \mathbf {B}^T\mathbf {j}_D= \pmb {0}_D\) and we assume \(\mathbf {FB}=\mathbf {B}^*\mathbf {F}\). We write \(\mathbf {B}\) in blocks as follows:

$$\begin{aligned} \mathbf {B} = \begin{bmatrix} \mathbf {B}_1 &{}\mathbf {b}_2\\ \mathbf {b}_3^T &{} b_4, \end{bmatrix} \end{aligned}$$

where \(\mathbf {B}_1\) is a \(D-1 \times D-1\) matrix, \(\mathbf {b}_2\) and \(\mathbf {b}_3^T\in \mathbf {R}^{D-1}\) and \(\mathbf {b}_4 \in \mathbf {R}\). Using the fact that \(\mathbf {B} \mathbf {j}_D= \mathbf {B}^T\mathbf {j}_D= \pmb {0}_D\), we get

$$\begin{aligned} {\left\{ \begin{array}{ll} \mathbf {b}_2 =- \mathbf {B}_1\mathbf {j}_{D-1}\\ \mathbf {b}_3 = -\mathbf {B}_1^T\mathbf {j}_{D-1}\\ \mathbf {b}_4 = \mathbf {j}_{D-1}^T \mathbf {B}_1\mathbf {j}_{D-1} \end{array}\right. }. \end{aligned}$$
(24)

To find \(\mathbf {B}\), we only need to find \(\mathbf {B}_1\). Using (24), we write the \((D-1) \times D\) matrix \(\mathbf {FB}\) as a function of \(\mathbf {B}_1\):

$$\begin{aligned} \mathbf {FB}&= [(\mathbf {I}_{D-1}+ \mathbf {j}_{D-1}\mathbf {j}_{D-1}^T)\mathbf {B}_1 \ \ \ \ -(\mathbf {I}_{D-1} + \mathbf {j}_{D-1}\mathbf {j}_{D-1}^T)\mathbf {B}_1\mathbf {j}_{D-1}]. \end{aligned}$$

Furthermore, \(\mathbf {B}^*\mathbf {F} = [\mathbf {B}^*\ \ -\mathbf {B}^*\mathbf {j}_{D-1}]\). So, \(\mathbf {FB} = \mathbf {B}^*\mathbf {F}\) implies

$$\begin{aligned} \left( \mathbf {I}_{D-1}+ \mathbf {j}_{D-1}\mathbf {j}_{D-1}^T\right) \mathbf {B}_1 = \mathbf {B}^*. \end{aligned}$$

The inverse matrix of \(\left( \mathbf {I}_{D-1}+ \mathbf {j}_{D-1}\mathbf {j}_{D-1}^T\right) \) is \(\left( \mathbf {I}_{D-1}+ \mathbf {j}_{D-1}\mathbf {j}_{D-1}^T/D\right) \). Thus,

$$\begin{aligned} \mathbf {B}_1 = (\mathbf {I}_{D-1}+ \mathbf {j}_{D-1}\mathbf {j}_{D-1}^T/D)\mathbf {B}^*. \end{aligned}$$
(25)

Using (24) and (25), it is now easy to check that \(\mathbf {B}=\mathbf {K} \mathbf {B}^* \mathbf {F}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas-Agnan, C., Laurent, T., Ruiz-Gazen, A., Nguyen, T.H.A., Chakir, R., Lungarska, A. (2021). Spatial Simultaneous Autoregressive Models for Compositional Data: Application to Land Use. In: Filzmoser, P., Hron, K., Martín-Fernández, J.A., Palarea-Albaladejo, J. (eds) Advances in Compositional Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-71175-7_12

Download citation

Publish with us

Policies and ethics